scholarly journals Interannual Variability of Tropical Cyclones in the Australian Region: Role of Large-Scale Environment

2008 ◽  
Vol 21 (5) ◽  
pp. 1083-1103 ◽  
Author(s):  
Hamish A. Ramsay ◽  
Lance M. Leslie ◽  
Peter J. Lamb ◽  
Michael B. Richman ◽  
Mark Leplastrier

Abstract This study investigates the role of large-scale environmental factors, notably sea surface temperature (SST), low-level relative vorticity, and deep-tropospheric vertical wind shear, in the interannual variability of November–April tropical cyclone (TC) activity in the Australian region. Extensive correlation analyses were carried out between TC frequency and intensity and the aforementioned large-scale parameters, using TC data for 1970–2006 from the official Australian TC dataset. Large correlations were found between the seasonal number of TCs and SST in the Niño-3.4 and Niño-4 regions. These correlations were greatest (−0.73) during August–October, immediately preceding the Australian TC season. The correlations remain almost unchanged for the July–September period and therefore can be viewed as potential seasonal predictors of the forthcoming TC season. In contrast, only weak correlations (<+0.37) were found with the local SST in the region north of Australia where many TCs originate; these were reduced almost to zero when the ENSO component of the SST was removed by partial correlation analysis. The annual frequency of TCs was found to be strongly correlated with 850-hPa relative vorticity and vertical shear of the zonal wind over the main genesis areas of the Australian region. Furthermore, correlations between the Niño SST and these two atmospheric parameters exhibited a strong link between the Australian region and the Niño-3.4 SST. A principal component analysis of the SST dataset revealed two main modes of Pacific Ocean SST variability that match very closely with the basinwide patterns of correlations between SST and TC frequencies. Finally, it is shown that the correlations can be increased markedly (e.g., from −0.73 to −0.80 for the August–October period) by a weighted combination of SST time series from weakly correlated regions.

2006 ◽  
Vol 21 (6) ◽  
pp. 1041-1050 ◽  
Author(s):  
Eric A. Hendricks ◽  
Michael T. Montgomery

Abstract On 9–10 September 2002, multiple mesovortices were captured in great detail by rapid scan visible satellite imagery in subtropical, then later, Tropical Storm Gustav. These mesovortices were observed as low-level cloud swirls while the low-level structure of the storm was exposed due to vertical shearing. They are shown to form most plausibly via vortex tube stretching associated with deep convection; they become decoupled from the convective towers by vertical shear; they are advected with the low-level circulation; finally they initiate new hot towers on their boundaries. Partial evidence of an axisymmetrizing mesovortex and its hypothesized role in the parent vortex spinup is presented. Observations from the mesoscale and synoptic scale are synthesized to provide a multiscale perspective of the intensification of Gustav that occurred on 10 September. The most important large-scale factors were the concurrent relaxation of the 850–200-hPa-deep layer vertical wind shear from 10–15 to 5–10 m s−1 and movement over pockets of very warm sea surface temperatures (approximately 29.5°–30.5°C). The mesoscale observations are not sufficient alone to determine the precise role of the deep convection and mesovortices in the intensification. However, qualitative comparisons are made between the mesoscale processes observed in Gustav and recent full-physics and idealized numerical simulations to obtain additional insight.


2013 ◽  
Vol 70 (4) ◽  
pp. 1023-1034 ◽  
Author(s):  
Liguang Wu ◽  
Huijun Zong ◽  
Jia Liang

Abstract Large-scale monsoon gyres and the involved tropical cyclone formation over the western North Pacific have been documented in previous studies. The aim of this study is to understand how monsoon gyres affect tropical cyclone formation. An observational study is conducted on monsoon gyres during the period 2000–10, with a focus on their structures and the associated tropical cyclone formation. A total of 37 monsoon gyres are identified in May–October during 2000–10, among which 31 monsoon gyres are accompanied with the formation of 42 tropical cyclones, accounting for 19.8% of the total tropical cyclone formation. Monsoon gyres are generally located on the poleward side of the composited monsoon trough with a peak occurrence in August–October. Extending about 1000 km outward from the center at lower levels, the cyclonic circulation of the composited monsoon gyre shrinks with height and is replaced with negative relative vorticity above 200 hPa. The maximum winds of the composited monsoon gyre appear 500–800 km away from the gyre center with a magnitude of 6–10 m s−1 at 850 hPa. In agreement with previous studies, the composited monsoon gyre shows enhanced southwesterly flow and convection on the south-southeastern side. Most of the tropical cyclones associated with monsoon gyres are found to form near the centers of monsoon gyres and the northeastern end of the enhanced southwesterly flows, accompanying relatively weak vertical wind shear.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1359 ◽  
Author(s):  
Scott Curtis ◽  
Thomas Crawford ◽  
Munshi Rahman ◽  
Bimal Paul ◽  
M. Miah ◽  
...  

Understanding seasonal precipitation input into river basins is important for linking large-scale climate drivers with societal water resources and the occurrence of hydrologic hazards such as floods and riverbank erosion. Using satellite data at 0.25-degree resolution, spatial patterns of monsoon (June-July-August-September) precipitation variability between 1983 and 2015 within the Ganges–Brahmaputra–Meghna (GBM) river basin are analyzed with Principal Component (PC) analysis and the first three modes (PC1, PC2 and PC3) are related to global atmospheric-oceanic fields. PC1 explains 88.7% of the variance in monsoonal precipitation and resembles climatology with the center of action over Bangladesh. The eigenvector coefficients show a downward trend consistent with studies reporting a recent decline in monsoon rainfall, but little interannual variability. PC2 explains 2.9% of the variance and shows rainfall maxima to the far western and eastern portions of the basin. PC2 has an apparent decadal cycle and surface and upper-air atmospheric height fields suggest the pattern could be forced by tropical South Atlantic heating and a Rossby wave train stemming from the North Atlantic, consistent with previous studies. Finally, PC3 explains 1.5% of the variance and has high spatial variability. The distribution of precipitation is somewhat zonal, with highest values at the southern border and at the Himalayan ridge. There is strong interannual variability associated with PC3, related to the El Nino/Southern Oscillation (ENSO). Next, we perform a hydroclimatological downscaling, as precipitation attributed to the three PCs was averaged over the Pfafstetter level-04 sub-basins obtained from the World Wildlife Fund (Gland, Switzerland). While PC1 was the principal contributor of rainfall for all sub-basins, PC2 contributed the most to rainfall in the western Ganges sub-basin (4524) and PC3 contributed the most to the rainfall in the northern Brahmaputra (4529). Monsoon rainfall within these two sub-basins were the only ones to show a significant relationship (negative) with ENSO, whereas four of the eight sub-basins had a significant relationship (positive) with sea surface temperature (SST) anomalies in the tropical South Atlantic. This work demonstrates a geographic dependence on climate teleconnections in the GBM that deserves further study.


2009 ◽  
Vol 22 (14) ◽  
pp. 3877-3893 ◽  
Author(s):  
Savin S. Chand ◽  
Kevin J. E. Walsh

Abstract This study examines the variations in tropical cyclone (TC) genesis positions and their subsequent tracks for different phases of the El Niño–Southern Oscillation (ENSO) phenomenon in the Fiji, Samoa, and Tonga region (FST region) using Joint Typhoon Warning Center best-track data. Over the 36-yr period from 1970/71 to 2005/06, 122 cyclones are observed in the FST region. A large spread in the genesis positions is noted. During El Niño years, genesis is enhanced east of the date line, extending from north of Fiji to over Samoa, with the highest density centered around 10°S, 180°. During neutral years, maximum genesis occurs immediately north of Fiji with enhanced genesis south of Samoa. In La Niña years, there are fewer cyclones forming in the region than during El Niño and neutral years. During La Niña years, the genesis positions are displaced poleward of 12°S, with maximum density centered around 15°S, 170°E and south of Fiji. The cyclone tracks over the FST region are also investigated using cluster analysis. Tracks during the period 1970/71–2005/06 are conveniently described using three separate clusters, with distinct characteristics associated with different ENSO phases. Finally, the role of large-scale environmental factors affecting interannual variability of TC genesis positions and their subsequent tracks in the FST region are investigated. Favorable genesis positions are observed where large-scale environments have the following seasonal average thresholds: (i) 850-hPa cyclonic relative vorticity between −16 and −4 (×10−6 s−1), (ii) 200-hPa divergence between 2 and 8 (×10−6 s−1), and (iii) environmental vertical wind shear between 0 and 8 m s−1. The subsequent TC tracks are observed to be steered by mean 700–500-hPa winds.


2009 ◽  
Vol 137 (8) ◽  
pp. 2576-2591 ◽  
Author(s):  
Brandon Kerns ◽  
Edward Zipser

Abstract Using a subset of the relative vorticity maxima (VM) tracks described in Part I, large-scale environmental fields, cold cloud area, and rainfall area are used to discriminate between developing and nondeveloping tropical disturbances in the eastern North Pacific (EPAC) and Atlantic Oceans. By using a minimum cold cloud coverage requirement, the nondeveloping VM are limited to disturbances with enhanced low-level relative vorticity and widespread deep convection. Linear discriminant analysis is used to determine the overall discrimination and the relative importance of each predictor for each basin separately. It is important to distinguish the two basins because, for many predictors, the differences between the basins are greater than the differences between developing and nondeveloping VM in each basin. Using the parametric forecast method, there is greater discrimination and prediction skill in the EPAC than in the Atlantic. There are also significant differences between the two basins in terms of the degree of discrimination provided by each of the predictors. Surprisingly, the mean vertical wind shear magnitude is greater for EPAC developing VM than for EPAC nondeveloping VM. Incorporating the satellite-derived predictors marginally improves the potential forecast skill in the EPAC but not in the Atlantic. The prediction skill (Heidke skill score) of tropical cyclogenesis in the Atlantic is similar to what has been obtained in previous studies using cloud cluster tracks. There is greater predictive skill in the EPAC.


2012 ◽  
Vol 140 (4) ◽  
pp. 1047-1066 ◽  
Author(s):  
Melinda S. Peng ◽  
Bing Fu ◽  
Tim Li ◽  
Duane E. Stevens

This study investigates the characteristic differences of tropical disturbances that eventually develop into tropical cyclones (TCs) versus those that did not, using global daily analysis fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS) from the years 2003 to 2008. Time filtering is applied to the data to extract tropical waves with different frequencies. Waves with a 3–8-day period represent the synoptic-scale disturbances that are representatives as precursors of TCs, and waves with periods greater than 20 days represent the large-scale background environmental flow. Composites are made for the developing and nondeveloping synoptic-scale disturbances in a Lagrangian frame following the disturbances. Similarities and differences between them are analyzed to understand the dynamics and thermodynamics of TC genesis. Part I of this study focuses on events in the North Atlantic, while Part II focuses on the western North Pacific. A box difference index (BDI), accounting for both the mean and variability of the individual sample, is introduced to subjectively and quantitatively identify controlling parameters measuring the differences between developing and nondeveloping disturbances. Larger amplitude of the BDI implies a greater possibility to differentiate the difference between two groups. Based on their BDI values, the following parameters are identified as the best predictors for cyclogenesis in the North Atlantic, in the order of importance: 1) water vapor content within 925 and 400 hPa, 2) rain rate, 3) sea surface temperature (SST), 4) 700-hPa maximum relative vorticity, 5) 1000–600-hPa vertical shear, 6) translational speed, and 7) vertically averaged horizontal shear. This list identifies thermodynamic variables as more important controlling parameters than dynamic variables for TC genesis in the North Atlantic. When the east and west (separated by 40°W) Atlantic are examined separately, the 925–400-hPa water vapor content remains as the most important parameter for both regions. The SST and maximum vorticity at 700 hPa have higher importance in the east Atlantic, while SST becomes less important and the vertically averaged horizontal shear and horizontal divergence become more important in the west Atlantic.


2020 ◽  
pp. 1
Author(s):  
Shaohua Chen ◽  
Haikun Zhao ◽  
Graciela B. Raga ◽  
Philip J. Klotzbach

AbstractThis study highlights the distinct modulation of May-October tropical cyclones (TCs) in the western North Pacific (WNP), eastern North Pacific (ENP) and North Atlantic (NATL) basins by tropical trans-basin variability (TBV) and ENSO. The pure TBV significantly modulates total TC counts in all three basins, with more TCs in the WNP and ENP and fewer TCs in the NATL during warm TBV years and fewer TCs in the WNP and ENP and more TCs in the NATL during cold TBV years. By contrast, the pure ENSO signal shows no impact on total TC count over any of the three basins. These results are consistent with changes in large scale factors associated with TBV and ENSO. Low-level relative vorticity (VOR) is an important driver of WNP TC genesis frequency, with broad agreement between the observed spatial distribution of TC genesis and TBV/ENSO-associated VOR anomalies. TBV significantly affects ENP TC frequency due to changes in basin wide vertical wind shear and sea surface temperatures, while the modulation in TC frequency by ENSO is primarily caused by a north-south dipole modulation of large-scale atmospheric and oceanic factors. The pure TBV-related low-level VOR changes appear to be the most important factor modulating NATL TC frequency. Changes in large-scale factors compare well with the budget of synoptic-scale eddy kinetic energy. Possible physical processes associated with pure TBV and pure ENSO that modulate TC frequency are further discussed. This study contributes to the understanding of TC inter-annual variability and could thus be helpful for seasonal TC forecasting.


2018 ◽  
Vol 31 (4) ◽  
pp. 1377-1397 ◽  
Author(s):  
Haikun Zhao ◽  
Xingyi Duan ◽  
G. B. Raga ◽  
Fengpeng Sun

A significant increase of tropical cyclone (TC) frequency is observed over the North Atlantic (NATL) basin during the recent decades (1995–2014). In this study, the changes in large-scale controls of the NATL TC activity are compared between two periods, one before and one since 1995, when a regime change is observed. The results herein suggest that the significantly enhanced NATL TC frequency is related mainly to the combined effect of changes in the magnitudes of large-scale atmospheric and oceanic factors and their association with TC frequency. Interdecadal changes in the role of vertical wind shear and local sea surface temperatures (SSTs) over the NATL appear to be two important contributors to the recent increase of NATL TC frequency. Low-level vorticity plays a relatively weak role in the recent increase of TC frequency. These changes in the role of large-scale factors largely depend on interdecadal changes of tropical SST anomalies (SSTAs). Enhanced low-level westerlies to the east of the positive SSTAs have been observed over the tropical Atlantic since 1995, with a pattern nearly opposite to that seen before 1995. Moreover, the large-scale contributors to the NATL TC frequency increase since 1995 are likely related to both local and remote SSTAs. Quantification of the impacts of local and remote SSTAs on the increase of TC frequency over the NATL basin and the physical mechanisms require numerical simulations and further observational analyses.


2010 ◽  
Vol 138 (12) ◽  
pp. 4362-4374 ◽  
Author(s):  
James I. Belanger ◽  
Judith A. Curry ◽  
Peter J. Webster

Abstract Recent work suggests that there may exist skill in forecasting tropical cyclones (TC) using dynamically based ensemble products, such as those obtained from the ECMWF Monthly Forecast System (ECMFS). The ECMFS features an ensemble of 51 coupled ocean–atmosphere simulations integrated to 32 days once per week. Predicted levels of TC activity in the North Atlantic Ocean with these monthly ensemble forecasts is compared with the observed variability during the months of June–October during 2008 and 2009. Results indicate that the forecast system can capture large-scale regions that have a higher or lower risk of TC activity and that it has skill above climatology for the Gulf of Mexico and the “Main Development Region” on intraseasonal time scales. Regional forecast skill is traced to the model’s ability to capture the large-scale evolution of deep-layer vertical shear, the frequency of easterly waves, and the variance in 850-hPa relative vorticity. The predictability of TC activity, along with the forecast utility of the ECMFS, is shown to be sensitive to the phase and intensity of the Madden–Julian oscillation at the time of model initialization.


2008 ◽  
Vol 21 (24) ◽  
pp. 6457-6475 ◽  
Author(s):  
Irene Polo ◽  
Belén Rodríguez-Fonseca ◽  
Teresa Losada ◽  
Javier García-Serrano

Abstract This work presents a description of the 1979–2002 tropical Atlantic (TA) SST variability modes coupled to the anomalous West African (WA) rainfall during the monsoon season. The time-evolving SST patterns, with an impact on WA rainfall variability, are analyzed using a new methodology based on maximum covariance analysis. The enhanced Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) dataset, which includes measures over the ocean, gives a complete picture of the interannual WA rainfall patterns for the Sahel dry period. The leading TA SST pattern, related to the Atlantic El Niño, is coupled to anomalous precipitation over the coast of the Gulf of Guinea, which corresponds to the second WA rainfall principal component. The thermodynamics and dynamics involved in the generation, development, and damping of this mode are studied and compared with previous works. The SST mode starts at the Angola/Benguela region and is caused by alongshore wind anomalies. It then propagates westward via Rossby waves and damps because of latent heat flux anomalies and Kelvin wave eastward propagation from an off-equatorial forcing. The second SST mode includes the Mediterranean and the Atlantic Ocean, showing how the Mediterranean SST anomalies are those that are directly associated with the Sahelian rainfall. The global signature of the TA SST patterns is analyzed, adding new insights about the Pacific–Atlantic link in relation to WA rainfall during this period. Also, this global picture suggests that the Mediterranean SST anomalies are a fingerprint of large-scale forcing. This work updates the results given by other authors, whose studies are based on different datasets dating back to the 1950s, including both the wet and the dry Sahel periods.


Sign in / Sign up

Export Citation Format

Share Document