Collagen stability and cross-linking in normal and kyphoscoliotic mouse intervertebral discs

1988 ◽  
Vol 8 (4) ◽  
pp. 315-322 ◽  
Author(s):  
Gillian Venn ◽  
Trevor Sims ◽  
Roger M. Mason

Intervertebral discs of the cervical-thoracic region of the spine of BDL mice which are homozygous for the ky gene mutation undergo degeneration. Discs from these mice have a normal collagen content and undergo normal collagen cross linking prior to the appearance of degenerative changes. The major reducible collagen cross-link formed in discs of these mice and in normal CBA strain mice is hydroxylysino-5-ketonorleucine. These results and other previous results indicate that the discs in the ky mouse develop degenerative disease due to an extrinsic factor rather than to an intrinsic abnormality of their extracellular matrix. The extrinsic factor has been identified as spinal muscle atrophy.

1997 ◽  
Vol 322 (2) ◽  
pp. 535-542 ◽  
Author(s):  
Lynda KNOTT ◽  
John F. TARLTON ◽  
Allen J. BAILEY

With age, the proximal sections of turkey leg tendons become calcified, and this phenomenon has led to their use as a model for collagen mineralization. Mineralizing turkey leg tendon was used in this study to characterize further the composition and cross-linking of collagen in calcified tissues. The cross-link profiles of mineralizing collagen are significantly different from those of other collagenous matrices with characteristically low amounts of hydroxylysyl-pyridinoline and the presence of lysyl-pyridinoline and pyrrolic cross-links. However, the presence of the immature cross-link precursors previously reported in calcifying tissues was not supported in the present study, and was found to be due to the decalcification procedure using EDTA. Analysis of tendons from young birds demonstrated differences in the cross-link profile which indicated a higher level of hydroxylation of specific triple-helical lysines involved in cross-linking of the proximal tendon. This may be related to later calcification, suggesting that this part of the tendon is predestined to be calcified. The minimal changes in lysyl hydroxylation in both regions of the tendon with age were in contrast with the large changes in the cross-link profile, indicating differential hydroxylation of the helical and telopeptide lysine residues. Changes with age in the collagen matrix, its turnover and thermal properties in both the proximal and distal sections of the tendon clearly demonstrate that a new and modified matrix is formed throughout the tendon, and that a different type of matrix is formed at each site.


Cardiology ◽  
2020 ◽  
Vol 145 (3) ◽  
pp. 187-198 ◽  
Author(s):  
Naiyereh Mohammadzadeh ◽  
Arne Olav Melleby ◽  
Sheryl Palmero ◽  
Ivar Sjaastad ◽  
Shukti Chakravarti ◽  
...  

Introduction: The heart undergoes myocardial remodeling during progression to heart failure following pressure overload. Myocardial remodeling is associated with structural and functional changes in cardiac myocytes, fibroblasts, and the extracellular matrix (ECM) and is accompanied by inflammation. Cardiac fibrosis, the accumulation of ECM molecules including collagens and collagen cross-linking, contributes both to impaired systolic and diastolic function. Insufficient mechanistic insight into what regulates cardiac fibrosis during pathological conditions has hampered therapeutic so­lutions. Lumican (LUM) is an ECM-secreted proteoglycan known to regulate collagen fibrillogenesis. Its expression in the heart is increased in clinical and experimental heart failure. Furthermore, LUM is important for survival and cardiac remodeling following pressure overload. We have recently reported that total lack of LUM increased mortality and left ventricular dilatation, and reduced collagen expression and cross-linking in LUM knockout mice after aortic banding (AB). Here, we examined the effect of LUM on myocardial remodeling and function following pressure overload in a less extreme mouse model, where cardiac LUM level was reduced to 50% (i.e., moderate loss of LUM). Methods and Results: mRNA and protein levels of LUM were reduced to 50% in heterozygous LUM (LUM+/–) hearts compared to wild-type (WT) controls. LUM+/– mice were subjected to AB. There was no difference in survival between LUM+/– and WT mice post-AB. Echocardiography revealed no striking differences in cardiac geometry between LUM+/– and WT mice 2, 4, and 6 weeks post-AB, although markers of diastolic dysfunction indicated better function in LUM+/– mice. LUM+/– hearts revealed reduced cardiac fibrosis assessed by histology. In accordance, the expression of collagen I and III, the main fibrillar collagens in the heart, and other ECM molecules central to fibrosis, i.e. including periostin and fibronectin, was reduced in the hearts of LUM+/– compared to WT 6 weeks post-AB. We found no differences in collagen cross-linking between LUM+/– and WT mice post-AB, as assessed by histology and qPCR. Conclusions: Moderate lack of LUM attenuated cardiac fibrosis and improved diastolic dysfunction following pressure overload in mice, adding to the growing body of evidence suggesting that LUM is a central profibrotic molecule in the heart that could serve as a potential therapeutic target.


PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0200704 ◽  
Author(s):  
Rabab Sharif ◽  
Ben Fowler ◽  
Dimitrios Karamichos

2020 ◽  
Vol 295 (31) ◽  
pp. 10562-10571 ◽  
Author(s):  
Melanie Stammers ◽  
Irina M. Ivanova ◽  
Izabella S. Niewczas ◽  
Anne Segonds-Pichon ◽  
Matthew Streeter ◽  
...  

Collagen is a structural protein whose internal cross-linking critically determines the properties and functions of connective tissue. Knowing how the cross-linking of collagen changes with age is key to understanding why the mechanical properties of tissues change over a lifetime. The current scientific consensus is that collagen cross-linking increases with age and that this increase leads to tendon stiffening. Here, we show that this view should be reconsidered. Using MS-based analyses, we demonstrated that during aging of healthy C57BL/6 mice, the overall levels of collagen cross-linking in tail tendon decreased with age. However, the levels of lysine glycation in collagen, which is not considered a cross-link, increased dramatically with age. We found that in 16-week-old diabetic db/db mice, glycation reaches levels similar to those observed in 98-week-old C57BL/6 mice, while the other cross-links typical of tendon collagen either decreased or remained the same as those observed in 20-week-old WT mice. These results, combined with findings from mechanical testing of tendons from these mice, indicate that overall collagen cross-linking in mouse tendon decreases with age. Our findings also reveal that lysine glycation appears to be an important factor that contributes to tendon stiffening with age and in diabetes.


PLoS ONE ◽  
2018 ◽  
Vol 13 (9) ◽  
pp. e0204306 ◽  
Author(s):  
Takako Ida ◽  
Masaru Kaku ◽  
Megumi Kitami ◽  
Masahiko Terajima ◽  
Juan Marcelo Rosales Rocabado ◽  
...  

2012 ◽  
Vol 33 (11) ◽  
pp. 1589-1598 ◽  
Author(s):  
Aileen M. Barnes ◽  
Wayne A. Cabral ◽  
MaryAnn Weis ◽  
Elena Makareeva ◽  
Edward L. Mertz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document