scholarly journals Extracellular matrix with defective collagen cross-linking affects the differentiation of bone cells

PLoS ONE ◽  
2018 ◽  
Vol 13 (9) ◽  
pp. e0204306 ◽  
Author(s):  
Takako Ida ◽  
Masaru Kaku ◽  
Megumi Kitami ◽  
Masahiko Terajima ◽  
Juan Marcelo Rosales Rocabado ◽  
...  
Cardiology ◽  
2020 ◽  
Vol 145 (3) ◽  
pp. 187-198 ◽  
Author(s):  
Naiyereh Mohammadzadeh ◽  
Arne Olav Melleby ◽  
Sheryl Palmero ◽  
Ivar Sjaastad ◽  
Shukti Chakravarti ◽  
...  

Introduction: The heart undergoes myocardial remodeling during progression to heart failure following pressure overload. Myocardial remodeling is associated with structural and functional changes in cardiac myocytes, fibroblasts, and the extracellular matrix (ECM) and is accompanied by inflammation. Cardiac fibrosis, the accumulation of ECM molecules including collagens and collagen cross-linking, contributes both to impaired systolic and diastolic function. Insufficient mechanistic insight into what regulates cardiac fibrosis during pathological conditions has hampered therapeutic so­lutions. Lumican (LUM) is an ECM-secreted proteoglycan known to regulate collagen fibrillogenesis. Its expression in the heart is increased in clinical and experimental heart failure. Furthermore, LUM is important for survival and cardiac remodeling following pressure overload. We have recently reported that total lack of LUM increased mortality and left ventricular dilatation, and reduced collagen expression and cross-linking in LUM knockout mice after aortic banding (AB). Here, we examined the effect of LUM on myocardial remodeling and function following pressure overload in a less extreme mouse model, where cardiac LUM level was reduced to 50% (i.e., moderate loss of LUM). Methods and Results: mRNA and protein levels of LUM were reduced to 50% in heterozygous LUM (LUM+/–) hearts compared to wild-type (WT) controls. LUM+/– mice were subjected to AB. There was no difference in survival between LUM+/– and WT mice post-AB. Echocardiography revealed no striking differences in cardiac geometry between LUM+/– and WT mice 2, 4, and 6 weeks post-AB, although markers of diastolic dysfunction indicated better function in LUM+/– mice. LUM+/– hearts revealed reduced cardiac fibrosis assessed by histology. In accordance, the expression of collagen I and III, the main fibrillar collagens in the heart, and other ECM molecules central to fibrosis, i.e. including periostin and fibronectin, was reduced in the hearts of LUM+/– compared to WT 6 weeks post-AB. We found no differences in collagen cross-linking between LUM+/– and WT mice post-AB, as assessed by histology and qPCR. Conclusions: Moderate lack of LUM attenuated cardiac fibrosis and improved diastolic dysfunction following pressure overload in mice, adding to the growing body of evidence suggesting that LUM is a central profibrotic molecule in the heart that could serve as a potential therapeutic target.


PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0200704 ◽  
Author(s):  
Rabab Sharif ◽  
Ben Fowler ◽  
Dimitrios Karamichos

1988 ◽  
Vol 8 (4) ◽  
pp. 315-322 ◽  
Author(s):  
Gillian Venn ◽  
Trevor Sims ◽  
Roger M. Mason

Intervertebral discs of the cervical-thoracic region of the spine of BDL mice which are homozygous for the ky gene mutation undergo degeneration. Discs from these mice have a normal collagen content and undergo normal collagen cross linking prior to the appearance of degenerative changes. The major reducible collagen cross-link formed in discs of these mice and in normal CBA strain mice is hydroxylysino-5-ketonorleucine. These results and other previous results indicate that the discs in the ky mouse develop degenerative disease due to an extrinsic factor rather than to an intrinsic abnormality of their extracellular matrix. The extrinsic factor has been identified as spinal muscle atrophy.


2012 ◽  
Vol 33 (11) ◽  
pp. 1589-1598 ◽  
Author(s):  
Aileen M. Barnes ◽  
Wayne A. Cabral ◽  
MaryAnn Weis ◽  
Elena Makareeva ◽  
Edward L. Mertz ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 2198
Author(s):  
Hyunbum Kim ◽  
Laurensia Danis Anggradita ◽  
Sun-Jae Lee ◽  
Sung Sik Hur ◽  
Joonsuk Bae ◽  
...  

Keloid and hypertrophic scars are skin fibrosis-associated disorders that exhibit an uncontrollable proliferation of fibroblasts and their subsequent contribution to the excessive accumulation of extracellular matrix (ECM) in the dermis. In this study, to elucidate the underlying mechanisms, we investigated the pivotal roles of epidermal growth factor (EGF) in modulating fibrotic phenotypes of keloid and hypertrophic dermal fibroblasts. Our initial findings revealed the molecular signatures of keloid dermal fibroblasts and showed the highest degree of skin fibrosis markers, ECM remodeling, anabolic collagen-cross-linking enzymes, such as lysyl oxidase (LOX) and four LOX-like family enzymes, migration ability, and cell–matrix traction force, at cell–matrix interfaces. Furthermore, we observed significant EGF-mediated downregulation of anabolic collagen-cross-linking enzymes, resulting in amelioration of fibrotic phenotypes and a decrease in cell motility measured according to the cell–matrix traction force. These findings offer insight into the important roles of EGF-mediated cell–matrix interactions at the cell–matrix interface, as well as ECM remodeling. Furthermore, the results suggest their contribution to the reduction of fibrotic phenotypes in keloid dermal fibroblasts, which could lead to the development of therapeutic modalities to prevent or reduce scar tissue formation.


2018 ◽  
Vol 18 (14) ◽  
pp. 1242-1251 ◽  
Author(s):  
Carolina Anazco ◽  
Armando Rojas ◽  
Ileana Gonzalez ◽  
Maite A. Castro ◽  
Paz Robert ◽  
...  

Collagen, the most abundant component in mammalian tissues, has a crucial impact at skin level. Both promotion and maintenance of cross-linked collagen at the skin are critical to sustain the functionality and appearance of that tissue. Lysyl oxidases, also known as LOX enzymes, are the major collagen cross-linking enzymes that play a pivotal role in homeostasis. This minireview summarizes evidence that describes an amino oxidase-like activity, which could be attributed to polyphenols, or where polyphenols could be required. We also discuss some available collagen formulations and the scientific evidence that describes the impact on dermal extracellular matrix. In addition, information about encapsulation strategies to carry polyphenols, and some examples are also provided.


Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 259
Author(s):  
Massimo Alfano ◽  
Irene Locatelli ◽  
Cristina D’Arrigo ◽  
Marco Mora ◽  
Giovanni Vozzi ◽  
...  

Purpose: The biochemical composition and architecture of the extracellular matrix (ECM) is known to condition development and invasiveness of neoplasms. To clarify this point, we analyzed ECM stiffness, collagen cross-linking and anisotropy in lymph nodes (LN) of Hodgkin lymphomas (HL), follicular lymphomas (FL) and diffuse large B-cell lymphomas (DLBCL), compared with non-neoplastic LN (LDN). Methods and Results: We found increased elastic (Young’s) modulus in HL and advanced FL (grade 3A) over LDN, FL grade 1–2 and DLBCL. Digital imaging evidenced larger stromal areas in HL, where increased collagen cross-linking was found; in turn, architectural modifications were documented in FL3A by scanning electron microscopy and enhanced anisotropy by polarized light microscopy. Interestingly, HL expressed high levels of lysyl oxidase (LOX), an enzyme responsible for collagen cross-linking. Using gelatin scaffolds fabricated with a low elastic modulus, comparable to that of non-neoplastic tissues, we demonstrated that HL LN-derived mesenchymal stromal cells and HL cells increased the Young’s modulus of the extracellular microenvironment through the expression of LOX. Indeed, LOX inhibition by β-aminopropionitrile prevented the gelatin stiffness increase. Conclusions: These data indicate that different mechanical, topographical and/or architectural modifications of ECM are detectable in human lymphomas and are related to their histotype and grading.


Sign in / Sign up

Export Citation Format

Share Document