Studies on the tryptophan residues of soybean agglutinin. Involvement in saccharide binding

1989 ◽  
Vol 9 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Musti Joginadha Swamy ◽  
Avadhesha Surolia

Modification of tryptophan side chains of soybean agglutinin (SBA) with N-bromosuccinimide results in a loss of the hemagglutinating and carbohydrate binding activities of the protein. One residue/subunit is probably essential for the binding activity. Modification leads to a large decrease in the fluorescene of the protein accompained by a blue shift. Iodide ion quenching of the protein fluorescence shows that saccharide binding results in a decreased accessibility of some of the tryptophan side chains. These results strongly point towards the involvement of tryptophan residues in the active site of SBA.

2022 ◽  
Vol 3 (1) ◽  
pp. 1-13
Author(s):  
Henry W. Orton ◽  
Iresha D. Herath ◽  
Ansis Maleckis ◽  
Shereen Jabar ◽  
Monika Szabo ◽  
...  

Abstract. The metallo-β-lactamase IMP-1 features a flexible loop near the active site that assumes different conformations in single crystal structures, which may assist in substrate binding and enzymatic activity. To probe the position of this loop, we labelled the tryptophan residues of IMP-1 with 7-13C-indole and the protein with lanthanoid tags at three different sites. The magnetic susceptibility anisotropy (Δχ) tensors were determined by measuring pseudocontact shifts (PCSs) of backbone amide protons. The Δχ tensors were subsequently used to identify the atomic coordinates of the tryptophan side chains in the protein. The PCSs were sufficient to determine the location of Trp28, which is in the active site loop targeted by our experiments, with high accuracy. Its average atomic coordinates showed barely significant changes in response to the inhibitor captopril. It was found that localisation spaces could be defined with better accuracy by including only the PCSs of a single paramagnetic lanthanoid ion for each tag and tagging site. The effect was attributed to the shallow angle with which PCS isosurfaces tend to intersect if generated by tags and tagging sites that are identical except for the paramagnetic lanthanoid ion.


2021 ◽  
Author(s):  
Henry W. Orton ◽  
Iresha D. Herath ◽  
Ansis Maleckis ◽  
Shereen Jabar ◽  
Monika Szabo ◽  
...  

Abstract. The metallo-β-lactamase IMP-1 features a flexible loop near the active site that assumes different conformations in single crystal structures, which may assist in substrate binding and enzymatic activity. To probe the position of this loop, we labelled the tryptophan residues of IMP-1 with 7-13C-indole and the protein with lanthanoid tags at three different sites. The magnetic susceptibility anisotropy (Δχ) tensors were determined by measuring pseudocontact shifts (PCS) of backbone amide protons. The Δχ tensors were subsequently used to identify the atomic coordinates of the tryptophan side chains in the protein. The PCSs were sufficient to determine the location of Trp28, which is located in the active site loop targeted by our experiments, with high accuracy. Its average atomic coordinates showed barely significant changes in response to the inhibitor captopril. It was found that localisation spaces could be defined with better accuracy by including only the PCSs of a single paramagnetic lanthanoid ion for each tag and tagging site. The effect was attributed to the shallow angle with which PCS isosurfaces tend to intersect if generated by tags and tagging sites that are identical except for the paramagnetic lanthanoid ion.


1984 ◽  
Vol 217 (3) ◽  
pp. 773-781 ◽  
Author(s):  
S R Patanjali ◽  
M J Swamy ◽  
V Anantharam ◽  
M I Khan ◽  
A Surolia

The galactose-binding lectin from the seeds of the jequirity plant (Abrus precatorius) was subjected to various chemical modifications in order to detect the amino acid residues involved in its binding activity. Modification of lysine, tyrosine, arginine, histidine, glutamic acid and aspartic acid residues did not affect the carbohydrate-binding activity of the agglutinin. However, modification of tryptophan residues carried out in native and denaturing conditions with N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide led to a complete loss of its carbohydrate-binding activity. Under denaturing conditions 30 tryptophan residues/molecule were modified by both reagents, whereas only 16 and 18 residues/molecule were available for modification by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide respectively under native conditions. The relative loss in haemagglutinating activity after the modification of tryptophan residues indicates that two residues/molecule are required for the carbohydrate-binding activity of the agglutinin. A partial protection was observed in the presence of saturating concentrations of lactose (0.15 M). The decrease in fluorescence intensity of Abrus agglutinin on modification of tryptophan residues is linear in the absence of lactose and shows a biphasic pattern in the presence of lactose, indicating that tryptophan residues go from a similar to a different molecular environment on saccharide binding. The secondary structure of the protein remains practically unchanged upon modification of tryptophan residues, as indicated by c.d. and immunodiffusion studies, confirming that the loss in activity is due to modification only.


1988 ◽  
Vol 250 (1) ◽  
pp. 291-294 ◽  
Author(s):  
G Gitlin ◽  
E A Bayer ◽  
M Wilchek

Egg-white avidin was modified with the tryptophan-specific reagent 2-hydroxy-5-nitrobenzyl bromide. The complete loss of biotin-binding activity was achieved upon modification of an average of one tryptophan residue per avidin subunit. The identity of the modified residues was determined by isolating the relevant tryptic and chymotryptic peptides from CNBr-cleaved avidin fragments. The results demonstrate that Trp-70 and Trp-110 are modified in approximately equivalent proportions. It is believed that these residues are located in the active site of avidin and take part in the binding of biotin.


2002 ◽  
Vol 69 ◽  
pp. 59-72 ◽  
Author(s):  
Kurt Drickamer ◽  
Andrew J. Fadden

Many biological effects of complex carbohydrates are mediated by lectins that contain discrete carbohydrate-recognition domains. At least seven structurally distinct families of carbohydrate-recognition domains are found in lectins that are involved in intracellular trafficking, cell adhesion, cell–cell signalling, glycoprotein turnover and innate immunity. Genome-wide analysis of potential carbohydrate-binding domains is now possible. Two classes of intracellular lectins involved in glycoprotein trafficking are present in yeast, model invertebrates and vertebrates, and two other classes are present in vertebrates only. At the cell surface, calcium-dependent (C-type) lectins and galectins are found in model invertebrates and vertebrates, but not in yeast; immunoglobulin superfamily (I-type) lectins are only found in vertebrates. The evolutionary appearance of different classes of sugar-binding protein modules parallels a development towards more complex oligosaccharides that provide increased opportunities for specific recognition phenomena. An overall picture of the lectins present in humans can now be proposed. Based on our knowledge of the structures of several of the C-type carbohydrate-recognition domains, it is possible to suggest ligand-binding activity that may be associated with novel C-type lectin-like domains identified in a systematic screen of the human genome. Further analysis of the sequences of proteins containing these domains can be used as a basis for proposing potential biological functions.


2021 ◽  
Vol 22 (11) ◽  
pp. 5639
Author(s):  
Nikolai Huwa ◽  
Oliver H. Weiergräber ◽  
Christian Kirsch ◽  
Ulrich Schaffrath ◽  
Thomas Classen

The monocot chimeric jacalin OsJAC1 from Oryza sativa consists of a dirigent and a jacalin-related lectin domain. The corresponding gene is expressed in response to different abiotic and biotic stimuli. However, there is a lack of knowledge about the basic function of the individual domains and their contribution to the physiological role of the entire protein. In this study, we have established a heterologous expression in Escherichia coli with high yields for the full-length protein OsJAC1 as well as its individual domains. Our findings showed that the secondary structure of both domains is dominated by β-strand elements. Under reducing conditions, the native protein displayed clearly visible transition points of thermal unfolding at 59 and 85 °C, which could be attributed to the lectin and the dirigent domain, respectively. Our study identified a single carbohydrate-binding site for each domain with different specificities towards mannose and glucose (jacalin domain), and galactose moieties (dirigent domain), respectively. The recognition of different carbohydrates might explain the ability of OsJAC1 to respond to different abiotic and biotic factors. This is the first report of specific carbohydrate-binding activity of a DIR domain, shedding new light on its function in the context of this monocot chimeric jacalin.


1985 ◽  
Vol 229 (3) ◽  
pp. 687-692 ◽  
Author(s):  
F Tabary ◽  
J P Frénoy

The interaction of lectin isolated from rice (Oryza sativa) embryos with N-acetylglucosaminides was studied by equilibrium dialysis and fluorescence. Equilibrium dialysis with 4-methylumbelliferyl-(GlcNac)2 showed that rice lectin (Mr 38000) contains four equivalent saccharide-binding sites. Addition of the N-acetylglucosaminides GlcNac, (GlcNac)2 and (GlcNac)3 enhanced the intrinsic fluorescence of rice lectin and this was accompanied by a 10nm blue-shift of its maximum fluorescence with (GlcNac)2 and (GlcNac)3. These changes in intensity allowed determination of the association constants, which increased with the number of saccharide units: at 20 degrees C, Ka = (1.3 +/- 0.1) X 10(3), (5.1 +/- 0.4) X 10(4) and (2.6 +/- 0.1) X 10(5) M−1 for GlcNac, (GlcNac)2 and (GlcNac)3 respectively. The binding enthalpy, delta H0, for the three glucosaminides were very low and ranged from −12.1 to −20.6 kJ X mol-1. The results are compared with those obtained with wheat-germ agglutinin, another GlcNac-specific gramineaous lectin.


2019 ◽  
Author(s):  
Yashraj S. Kulkarni ◽  
Tina L. Amyes ◽  
John Richard ◽  
Shina Caroline Lynn Kamerlin

Manuscript and supporting information outlining an analysis of an extended Brønsted relationship obtained from empirical valence bond simulations of substrate deprotonation catalyzed by wild-type and mutant variants of triosephosphate isomerase.


Author(s):  
O.A. Holichenko ◽  
◽  
N.I. Shtemenko ◽  
A.A. Ovcharenko ◽  
A.V. Shtemenko

We report about the interactions of dirhenium(III) compound cis-[Re2(Trp)2Cl4(CH3CN)2]Cl2 (I) with bovine serum protein (BSA) and guanine (G4) quadruplexes DNA by UV-Vis titration. Addition of I to BSA led to the interaction between these compounds with binding constant 5.6103 M–1 and hyperchromism (20.9%) of the main protein absorption band (280 nm). These results support our assumption about formation of the additional conjugated systems during the process of interaction with BSA. Stabilization of the quadruple bonded rhenium(III) complex compound was shown in the presence of BSA (the rate of destruction was reduced), that may be explained by interaction between amino acid residues of BSA and quadruple bond of dirhenium(III) complex compound. In addition, we have obtained data about strong hyperchromism (up to 100%) and significant shift of the maximum of absorption (blue shift) towards UV (2–9 nm) and visible (22 nm) regions in the spectra of mixtures G4s and I, that, in our opinion, correlated with a conformational change in DNA and with formation of additional conjugated systems around quadruple bond of I. In a whole, our work confirms the strong binding activity of a cluster dirhenium(III) compound towards G4 quadruplexes, that exceed the binding activity to proteins and witness to preferential interactions of I with G4 DNA in a living cell. These results may be used in DNA "silencing technology" and "antisense therapy".


Sign in / Sign up

Export Citation Format

Share Document