Nuclear accumulation of a heat-shock 70-like protein during herpes simplex virus replication

1987 ◽  
Vol 7 (6) ◽  
pp. 475-483 ◽  
Author(s):  
Nicholas B. LaThangue ◽  
David S. Latchman

A monoclonal antibody defines an antigen, p68, related to hsp70, which is located in nuclei of uninfected exponential cells. Nuclear p68 is released by DNase but not RNase treatment suggesting an association with DNA. Lytic productive infection of confluent quiescent BHK 21 cells with herpes simplex virus type-2 causes p68 to accumulate in nuclei. The effect is specific for HSV-2, and does not occur in HSV-1 infected cells. Maximum nuclear accumulation of p68 requires virus DNA synthesis although a significant accumulation occurs in the absence of such synthesis. It is suggested that the nuclear accumulation of p68 is an aspect of a cellular stress response to lytic infection with HSV-2.

2014 ◽  
Vol 112 (1) ◽  
pp. E49-E55 ◽  
Author(s):  
Te Du ◽  
Zhiyuan Han ◽  
Guoying Zhou ◽  
Bernard Roizman

The key events in herpes simplex virus (HSV) infections are (i) replication at a portal of entry into the body modeled by infection of cultured cells; (ii) establishment of a latent state characterized by a sole latency-associated transcript and microRNAs (miRNAs) modeled in murine peripheral ganglia 30 d after inoculation; and (iii) reactivation from the latent state modeled by excision and incubation of ganglia in medium containing anti-NGF antibody for a timespan of a single viral replicative cycle. In this report, we examine the pattern of synthesis and accumulation of 18 HSV-1 miRNAs in the three models. We report the following: (i) H2-3P, H3-3P, H4-3P, H5-3P, H6-3P, and H7-5P accumulated in ganglia harboring latent virus. All but H4-3P were readily detected in productively infected cells, and most likely they originate from three transcriptional units. (ii) H8-5P, H15, H17, H18, H26, and H27 accumulated during reactivation. Of this group, only H26 and H27 could be detected in productively infected cells. (iii) Of the 18 we have examined, only 10 miRNAs were found to accumulate above background levels in productively infected cells. The disparity in the accumulation of miRNAs in cell culture and during reactivation may reflect differences in the patterns of regulation of viral gene expression during productive infection and during reactivation from the latent state.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 887
Author(s):  
Edward Trybala ◽  
Nadia Peerboom ◽  
Beata Adamiak ◽  
Malgorzata Krzyzowska ◽  
Jan-Åke Liljeqvist ◽  
...  

The contribution of virus components to liberation of herpes simplex virus type 2 (HSV-2) progeny virions from the surface of infected cells is poorly understood. We report that the HSV-2 mutant deficient in the expression of a mucin-like membrane-associated glycoprotein G (mgG) exhibited defect in the release of progeny virions from infected cells manifested by ~2 orders of magnitude decreased amount of infectious virus in a culture medium as compared to native HSV-2. Electron microscopy revealed that the mgG deficient virions were produced in infected cells and present at the cell surface. These virions could be forcibly liberated to a nearly native HSV-2 level by the treatment of cells with glycosaminoglycan (GAG)-mimicking oligosaccharides. Comparative assessment of the interaction of mutant and native virions with surface-immobilized chondroitin sulfate GAG chains revealed that while the mutant virions associated with GAGs ~fourfold more extensively, the lateral mobility of bound virions was much poorer than that of native virions. These data indicate that the mgG of HSV-2 balances the virus interaction with GAG chains, a feature critical to prevent trapping of the progeny virions at the surface of infected cells.


1976 ◽  
Vol 62 (6) ◽  
pp. 615-622 ◽  
Author(s):  
Giulio Tarro ◽  
Mario Di Gioia ◽  
Roberta Cocchiara ◽  
Riccardo Smeraglia ◽  
Giovan Giacomo Giordano ◽  
...  

Data are reported on the HSV nonstructural antigens detected in GPK and RK cells after infection with the same strain of virus. Both the HSV types 1 and 2 NV antigens consist of more than one component for which the immunized guinea pigs produce distinct antibodies. It was possible to separate by PAGE, HSV-induced markers not only from cells undergoing lytic infection by the virus but also from viable cells from squamous cell carcinoma of the head and neck and the urogenital tract. These fractions were tested with sera from cancer patients, and the percentages of their CF reactivity are reported. The specificity of the antibody to the antigen from the cancer cells was less high than that of the antibody to the antigen from HSV-infected cells. It is suggested that the use of these PAGE separate antigens would eliminate the need for removal of the virion antibody from the cancer sera prior to testing them for the NV-specific antibody.


1976 ◽  
Vol 24 (12) ◽  
pp. 1249-1257 ◽  
Author(s):  
J F Leary ◽  
M F Notter ◽  
P Todd

Human cells in culture (HEp-2) were infected with herpes simplex virus type 2 (HSV-2) at multiplicities of infection varying from 0.2 to 10, and fixed 6, 12, 18 and 24 hr after infection. Infection-related antigens were detected by an indirect double antibody (peroxidase conjugated goat anti-rabbit to rabbit anti-herpes simplex virus type 2) immunoenzymatic staining reaction that rendered infection-related antigens visible by light microscopy. A corresponding series of laser flow cytophotometric experiments yielded reproducible large-angle (1-19 degrees) laser-light scattering distributions that depended upon multiplicities of infection and the location of the infection-related antigens in the infected cells.


1991 ◽  
Vol 275 (2) ◽  
pp. 369-372
Author(s):  
D S Latchman

Although lytic infection with herpes simplex virus (HSV) causes the repression of most host cell biosynthesis, it results in increased transcription of the cellular gene encoding the U4 snRNA, leading to accumulation of this snRNA. In contrast, no increased transcription of the gene encoding the U2 snRNA or accumulation of this RNA is observed in infected cells. These effects are mediated by the HSV virion protein Vmw65, which activates the U4 gene but does not affect the U2 gene. The significance of this difference between the U2 and U4 genes is discussed with regard to the presence in both of these genes of an identical octamer-binding site for the cellular transcription factor Oct-1 which complexes with Vmw65.


2000 ◽  
Vol 74 (22) ◽  
pp. 10417-10429 ◽  
Author(s):  
C. C. Smith ◽  
J. Nelson ◽  
L. Aurelian ◽  
M. Gober ◽  
B. B. Goswami

ABSTRACT We used a herpes simplex virus type 2 (HSV-2) mutant with a deletion in the RR1 (ICP10) PK domain (ICP10ΔPK) and an MEK inhibitor (PD98059) to examine the role of ICP10 PK in virus growth. In HSV-2-infected cells, ICP10 PK binds and phosphorylates the GTPase activating protein Ras-GAP. In vitro binding and peptide competition assays indicated that Ras-GAP N-SH2 and PH domains, respectively, bind ICP10 at phosphothreonines 117 and 141 and a WD40-like motif at positions 160 to 173. Binding and phosphorylation did not occur in cells infected with ICP10ΔPK. GTPase activity was significantly lower in HSV-2- than in ICP10ΔPK-infected cells. Conversely, the levels of activated Ras and mitogen-activated protein kinase (MAPK), and the expression and stabilization of the transcription factor c-Fos were significantly increased in cells infected with HSV-2 or a revertant virus [HSV-2(R)] but not with ICP10ΔPK. PD98059 inhibited MAPK activation and induction-stabilization of c-Fos. Expression from the ICP10 promoter was increased in cells infected with HSV-2 but not with ICP10ΔPK, and increased expression was ablated by PD98059. ICP10 DNA formed a complex with nuclear extracts from HSV-2-infected cells which was supershifted by c-Fos antibody and was not seen with extracts from ICP10ΔPK-infected cells. Complex formation was abrogated by PD98059. Onset of HSV-2 replication was significantly delayed by PD98059 (14 h versus 2 h in untreated cells), a delay similar to that seen for ICP10ΔPK. The data indicate that Ras-GAP phosphorylation by ICP10 PK is involved in the activation of the Ras/MEK/MAPK mitogenic pathway and c-Fos induction and stabilization. This results in increased ICP10 expression and the timely onset of HSV-2 growth.


2002 ◽  
Vol 83 (1) ◽  
pp. 157-165 ◽  
Author(s):  
Jan-Åke Liljeqvist ◽  
Edward Trybala ◽  
Johan Hoebeke ◽  
Bo Svennerholm ◽  
Tomas Bergström

Glycoprotein G-2 (gG-2) of herpes simplex virus type 2 (HSV-2) is cleaved to a secreted amino-terminal portion (sgG-2) and to a cell-associated carboxy-terminal portion which is further O-glycosylated to constitute the mature gG-2 (mgG-2). In contrast to mgG-2, which is known to elicit a type-specific antibody response in the human host, information on the immunogenic properties of sgG-2 is lacking. Here the sgG-2 protein was purified on a heparin column and used for production of monoclonal antibodies (mAbs). Four anti-sgG-2 mAbs were mapped using a Pepscan technique and identified linear epitopes which localized to the carboxy-terminal part of the protein. One additional anti-sgG-2 mAb, recognizing a non-linear epitope, was reactive to three discrete peptide stretches where the most carboxy-terminally located stretch was constituted by the amino acids 320RRAL323. Although sgG-2 is rapidly secreted into the cell-culture medium after infection, the anti-sgG-2 mAbs identified substantial amounts of sgG-2 in the cytoplasm of HSV-2-infected cells. All of the anti-sgG-2 mAbs were HSV-2 specific showing no cross-reactivity to HSV-1 antigen or to HSV-1-infected cells. Similarly, sera from 50 HSV-2 isolation positive patients were all reactive to sgG-2 in an enzyme immunoassay whilst no reactivity was seen in 25 sera from HSV-1 isolation positive patients or in 25 serum samples from HSV-negative patients suggesting that sgG-2 is a novel antigen potentially suitable for type-discriminating serodiagnosis.


1975 ◽  
Vol 23 (4) ◽  
pp. 283-288 ◽  
Author(s):  
L R Trusal ◽  
A Anthony ◽  
J J Docherty

Infection of human embryonic lung cells with herpes simplex virus type 1 (HSV-1) and herpes simplex type 1 (HSV-2) resulted in: (a) qualitative (nuclear cytopathologic) alterations and quantitative (nuclear area) differences in infected compared to control nuclei; (b) increased Feulgen-deoxyribonucleic acid (F-DNA) amounts in infected cells, probably due to viral DNA; (c) higher F-DNA levels in HSV-2 infected cells; and (d) increased rates of F-DNA hydrolysis in viral-infected as compared to uninfected nuclei.


Sign in / Sign up

Export Citation Format

Share Document