In vitro studies on the subcellular location of glucosidase I and glucosidase II in dog pancreas

1986 ◽  
Vol 6 (9) ◽  
pp. 827-834 ◽  
Author(s):  
Ernst Bause ◽  
Roland Günther ◽  
Jürgen Schweden ◽  
Ulrich Tillmann

When programmed with yeast prepro-α-factor mRNA, the heterologous reticulocyte/dog pancreas translation system synthesizes two pheromone related polypeptides, a cytosolically located primary translation product (pp-α-Fcyt, 21 kDa) and a membrane-specific and multiply glycosylated e-factor precursor (pp-α-F3, 27.5 kDa). Glycosylation of the membrane specific pp-α-F3 species is competitively inhibited by synthetic peptides containing the consensus sequence Asn-Xaa-Thr as indicated by a shift of its molecular mass from 27.5 kDa to about 19.5 kDa (pp-α-F0), whereas the primary translation product pp-α-F cyt is not affected. Likewise, only the glycosylated pp-α-F3 structure is digested by Endo H yielding a polypeptide with a molecular mass between PP-α-F0 and pp-α-F cyt. These observations strongly suggest that the primary translation product is proteolytically processed during/on its translocation into the lumen of the microsomal vesicles. We believe that this proteolytic processing is due to the cleavage of a signal sequence from the pp-α-F cyt species, although this interpretation contradicts previous data from other groups. The distinct effect exerted by various glycosidase inhibitors (e.g. 1-deoxynojirimycin, N-methyl-dNM, 1-deoxymannojirimycin) on the electrophoretic mobility of the pp-α-F3 polypeptide indicates that its oligosaccharide chains are processed to presumbly Man9-GlcNAc2 structures under the in vitro conditions of translation. This oligosaccharide processing is most likely to involve the action of glucosidase I and glucosidase II as follows from the specificity of the glycosidase inhibitors applied and the differences of the molecular mass observed in their presence. In addition, several arguments suggest that both trimming enzymes are located in the lumen of the microsomal vesicles derived from endoplasmic reticulum membranes.


1975 ◽  
Vol 67 (3) ◽  
pp. 852-862 ◽  
Author(s):  
G Blobel ◽  
B Dobberstein

The data presented in this paper demonstrate that native small ribosomal subunits from reticulocytes (containing initiation factors) and large ribosomal subunits derived from free polysomes of reticulocytes by the puromycin-KCl procedures can function with stripped microsomes derived from dog pancreas rough microsomes in a protein-synthesizing system in vitro in response to added IgG light chain mRNA so as to segregate the translation product in a proteolysis-resistant space. No such segregation took place for the translation product of globin mRNA. In addition to their ability to segregate the translation product of a specific heterologous mRNA, native dog pancreas rough microsomes as well as derived stripped microsomes were able to proteolytically process the larger, primary translation product in an apparently correct manner, as evidenced by the identical mol wt of the segregated translation product and the authentic secreted light chain. Segregation as well as proteolytic processing by native and stripped microsomes occurred only during ongoing translation but not after completion of translation. Attempts to solubilize the proteolytic processing activity, presumably localized in the microsomal membrane by detergent treatment, and to achieve proteolytic processing of the completed light chain precursor protein failed. Taken together, these results establish unequivocally that the information for segregation of a translation product is encoded in the mRNA itself, not in the protein-synthesizing apparatus; this provides strong evidence in support of the signal hypothesis.



2005 ◽  
Vol 79 (12) ◽  
pp. 7283-7290 ◽  
Author(s):  
Tomoichiro Oka ◽  
Kazuhiko Katayama ◽  
Satoko Ogawa ◽  
Grant S. Hansman ◽  
Tsutomu Kageyama ◽  
...  

ABSTRACT The genome of Sapovirus (SaV), a causative agent of gastroenteritis in humans and swine, contains either two or three open reading frames (ORFs). Functional motifs characteristic to the 2C-like NTPase (NTPase), VPg, 3C-like protease (Pro), 3D-like RNA-dependent RNA polymerase (Pol), and capsid protein (VP1) are encoded in the ORF1 polyprotein, which is afterwards cleaved into the nonstructural and structural proteins. We recently determined the complete genome sequence of a novel human SaV strain, Mc10, which has two ORFs. To investigate the proteolytic cleavage of SaV ORF1 and the function of protease on the cleavage, both full-length and truncated forms of the ORF1 polyprotein either with or without mutation in 1171Cys to Ala of the GDCG motif were expressed in an in vitro coupled transcription-translation system. The translation products were analyzed directly by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or by immunoprecipitation with region-specific antibodies. The ORF1 polyprotein was processed into at least 10 major proteins: p11, p28, p35, p32, p14, p70, p60, p66, p46, and p120. Seven of these products were arranged in the following order: NH2-p11-p28-p35(NTPase)-p32-p14(VPg)-p70(Pro-Pol)-p60(VP1)-COOH. p66, p46 and p120 were precursors of p28-p35 (NTPase), p32-p14 (VPg), and p32-p14 (VPg)-p70 (Pro-Pol), respectively. Mutagenesis in the 3C-like protease motif fully abolished the proteolytic activity. The cleavage map of SaV ORF1 is similar to those of other heretofore known members of the family Caliciviridae, especially to rabbit hemorrhagic disease virus, a member of the genus Lagovirus.



Development ◽  
1994 ◽  
Vol 120 (5) ◽  
pp. 1243-1250 ◽  
Author(s):  
D.S. Schneider ◽  
Y. Jin ◽  
D. Morisato ◽  
K.V. Anderson

Stein et al. (1991) identified a soluble, extracellular factor that induces ventral structures at the site where it is injected in the extracellular space of the early Drosophila embryo. This factor, called polarizing activity, has the properties predicted for a ligand for the transmembrane receptor encoded by the Toll gene. Using a bioassay to follow activity, we purified a 24 × 10(3) M(r) protein that has polarizing activity. The purified protein is recognized by antibodies to the C-terminal half of the Spatzle protein, indicating that this polarizing activity is a product of the spatzle gene. The purified protein is smaller than the primary translation product of spatzle, suggesting that proteolytic processing of Spatzle on the ventral side of the embryo is required to generate the localized, active form of the protein.



1991 ◽  
Vol 69 (8) ◽  
pp. 561-565 ◽  
Author(s):  
Gilles Paradis ◽  
Josée Gaudreau ◽  
Gilles Frenette ◽  
Michel Thabet ◽  
Roland R. Tremblay ◽  
...  

As a first step in understanding the changes in protein synthesis that occur in renal cell carcinoma, we have prepared poly(A)+ RNA from surgically removed tumors and from their normal tissue counterpart. These RNAs were then translated in vitro in the rabbit reticulocyte lysate system and the synthesized labeled polypeptides were separated by one- and two-dimensional gel electrophoresis. A major 25-kDa primary translation product was observed with all renal cell carcinomas. The synthesis of this protein was barely detectable with the RNA from normal tissue adjacent to the tumor. To determine if this protein could be further processed (removal of signal peptide and (or) core glycosylation), canine pancreatic microsomal membranes were added to the system. This addition resulted in the formation of a vertical row of three additional spots, with the same isoelectric point as the primary translation product and with molecular masses ranging from 27 to 31 kDa. The 31-kDa protein was retained on Concanavalin A. After digestion with endoglycosidase H, it was no longer visible on sodium dodecyl sulfate gels and a new 27-kDa band was generated suggesting that the mature protein was indeed a glycoprotein. Future experiments will be aimed at identifying this protein and examining its potential value as a marker of renal cell carcinoma.Key words: renal cancer, post-translational modifications, glycosylation, tumor markers.



2002 ◽  
Vol 76 (16) ◽  
pp. 7996-8002 ◽  
Author(s):  
Ernesto Méndez ◽  
Teresa Fernández-Luna ◽  
Susana López ◽  
Martha Méndez-Toss ◽  
Carlos F. Arias

ABSTRACT Astroviruses require the proteolytic cleavage of the capsid protein to infect the host cell. Here we describe the processing pathway of the primary translation product of the structural polyprotein (ORF2) encoded by a human astrovirus serotype 8 (strain Yuc8). The primary translation product of ORF2 is of approximately 90 kDa, which is subsequently cleaved to yield a 70-kDa protein (VP70) which is assembled into the viral particles. Limited trypsin treatment of purified particles containing VP70 results in the generation of polypeptides VP41 and VP28, which are then further processed to proteins of 38.5, 35, and 34 kDa and 27, 26, and 25 kDa, respectively. VP34, VP27 and VP25 are the predominant proteins in fully cleaved virions, which correlate with the highest level of infectivity. Processing of the VP41 protein to yield VP38.5 to VP34 polypeptides occurred at its carboxy terminus, as suggested by immunoblot analysis using hyperimmune sera to different regions of the ORF2, while processing of VP28 to generate VP27 and VP25 occurred at its carboxy and amino terminus, respectively, as determined by immunoblot, as well as by N-terminal sequencing of those products. Based on these data, the processing pathway for the 90-kDa primary product of astrovirus Yuc8 ORF2 is presented.



2011 ◽  
Vol 106 (6) ◽  
pp. 896-905 ◽  
Author(s):  
Hilde Almaas ◽  
Ellen Eriksen ◽  
Camilla Sekse ◽  
Irene Comi ◽  
Ragnar Flengsrud ◽  
...  

Peptides in caprine whey were identified afterin vitrodigestion with human gastrointestinal enzymes in order to determine their antibacterial effect. The digestion was performed in two continuing steps using human gastric juice (pH 2·5) and human duodenal juice (pH 8) at 37°C. After digestion the hydrolysate was fractionated and 106 peptides were identified. From these results, twenty-two peptides, located in the protein molecules, were synthesised and antibacterial activity examined. Strong activity of the hydrolysates was detected againstEscherichia coliK12,Bacillus cereusRT INF01 andListeria monocytogenes, less activity againstStaphylococcus aureusATCC 25 923 and no effect onLactobacillus rhamnosusGG. The pure peptides showed less antibacterial effect than the hydrolysates. When comparing the peptide sequences from human gastrointestinal enzymes with previously identified peptides from non-human enzymes, only two peptides, β-lactoglobulin f(92–100) and β-casein f(191–205) matched. No peptides corresponded to the antibacterial caprine lactoferricin f(14–42) or lactoferrampin C f(268–284). Human gastrointestinal enzymes seem to be more complex and have different cleavage points in their protein chains compared with purified non-human enzymes. Multiple sequence alignment of nineteen peptides showed proline-rich sequences, neighbouring leucines, resulting in a consensus sequence LTPVPELK. In such a way proline and leucine may restrict further proteolytic processing. The present study showed that human gastrointestinal enzymes generated different peptides from caprine whey compared with non-human enzymes and a stronger antibacterial effect of the hydrolysates than the pure peptides was shown. Antimicrobial activity against pathogens but not against probiotics indicate a possible host-protective activity of whey.



1985 ◽  
Vol 227 (3) ◽  
pp. 759-765 ◽  
Author(s):  
D Samols ◽  
S S MacIntyre ◽  
I Kushner

C-reactive protein (CRP) mRNA was assayed by cell-free translation of poly(A)-containing liver RNA isolated both from rabbits stimulated to undergo the acute-phase response and from unstimulated control rabbits. No CRP-related translation products were identified until the denaturant methylmercury hydroxide (CH3HgOH) was added to the RNA before cell-free translation. In the presence of the denaturant, a 24000-Da translation product was synthesized which was immunochemically identifiable as the CRP primary translation product. It is likely that rabbit CRP mRNA can form a stable intramolecular duplex which interferes with its translatability in vitro. The 24000-Da CH3HgOH-facilitated cell-free translation product was not detected in poly(A)-containing liver RNA from unstimulated animals, indicating that the concentration of translatable CRP mRNA was dramatically induced during the acute-phase response. On the basis of absorption experiments, the 24000-Da CRP primary translation product was immunochemically more closely related to denatured CRP than to native CRP.



1990 ◽  
Vol 68 (7-8) ◽  
pp. 1005-1011 ◽  
Author(s):  
C. A. Ketola-Pirie

Ferritin, an iron-sequestering and -binding protein, is localized to the vacuolar system in Calpodes ethlius larvae. The amount of iron-loaded ferritin in intact larval midgut can be increased by pretreatment with iron. When poly(A)+ RNA from control or iron-treated larvae was translated in vitro, a 24 kilodalton (kDa) protein was a major translation product. If the cell-free system was supplemented with dog pancreatic microsomes, the 24-kDa protein was not detectable: the major translation product was 28–30 kDa. The 24-kDa and 28- to 30-kDa proteins were identified as ferritin subunits by immunoprecipitation with anti-Manduca ferritin antibodies. Proteinase K digestion of the translation products showed that the 28- to 30-kDa subunit was targeted into the lumen of, and protected by, the microsomes. The change in molecular mass of the ferritin monomer was attributed to glycosylation of the 24-kDa subunit within the lumen of the microsomes. This was demonstrated by (i) the ability of the 28- to 30-kDa subunit, but not the 24-kDa subunit, to bind concanavalin A on Western blots and (ii) inhibition of the change in molecular mass from 24 to 28–30 kDa if tunicamycin is added to the microsomes. The results indicate that the Calpodes ferritin subunit was synthesized, targeted to microsomes, and glycosylated within their lumen in a rabbit reticulocyte cell-free system primed with midgut poly(A)+ RNA extracted from control or iron-treated larvae.Key words: insect ferritin, cell-free synthesis, glycosylation.



1983 ◽  
Vol 96 (3) ◽  
pp. 633-638 ◽  
Author(s):  
D L Paul ◽  
D A Goodenough

Synthesis of MP26, the principal protein of lens fiber plasma membranes, was directed in the reticulocyte lysate system by poly A mRNA enriched from whole bovine lens RNA using oligo (dt)-cellulose chromatography. Synthesized MP26 was enriched by immune precipitation. The in vitro-synthesized MP26 had an electrophoretic mobility indistinguishable from that of the native molecule. MP26 showed a cotranslational requirement for dog pancreas microsomes in order for membrane association to occur. Microsome-associated in vitro-synthesized MP26 showed a sensitivity to digestion with chymotrypsin which was similar to the sensitivity of native MP26 in isolated lens fiber plasma membranes, indicating correct insertion of the MP26 into the microsome. Synthesis and membrane insertion of MP26 using N-formyl-[35S]methionyl tRNA as label demonstrated that no proteolytic processing or significant glycosylation accompanied membrane insertion. Chymotryptic cleavage of membrane-inserted, N-formyl-[35S]methionine-labeled MP26 resulted in loss of label, suggesting that the N-terminal of the in vitro-synthesized MP26 faces the cytoplasm.



Sign in / Sign up

Export Citation Format

Share Document