‘Small’-proteoglycan: collagen interactions: Keratan sulphate proteoglycan associates with rabbit corneal collagen fibrils at the ‘a’ and ‘c’ bands

1985 ◽  
Vol 5 (9) ◽  
pp. 765-774 ◽  
Author(s):  
J. E. Scott ◽  
M. Haigh

l. Proteoglycans (PGs) in rabbit corneal stroma and mouse sclera have been stained for electron microscopy with Cupromeronic blue in a critical electrolyte concentration (CEC) mode, with and without prior digestion of the tissue by keratanase or chondroitinase ABC to remove the keratan sulphate (KS) or chondroitin-dermatan sulphates (CS or DS) respectively.2. Two classes of PGs, located orthogonally to the corneal collagen fibrils at either the ‘step’ (band ‘a’ or ‘c’) or gap zone (band ‘d’ or ‘e’) are shown to be KS-PGs or DS-PGs respectively. Four separate and specific PG binding sites on Type I collagen fibrils have thus been identified.3. Rabbit corneal KS and DS PGs each contain two kinds of PG (Gregory JD, Coster L & Damle SP (1982) J. Biol. Chem.257, 6965–6970). We propose that each ‘small’ protein-rich PG is associated with a specific binding site on the collagen fibril.

1985 ◽  
Vol 5 (1) ◽  
pp. 71-81 ◽  
Author(s):  
J. E. Scott ◽  
M. Haigh

The association of proteogtycans with type I collagen fibrils in skin, tendon, cornea and bone has been determined by electron microscopy using an electrondense dye, Cupromeronic blue, in the critical electrolyte concentration mode, backed up by biochemical analysis and digestion by hyaluronidase or keratanase. A major proteoglycan of the soft tissues, containing dermatan sulphat, is shown to be regularly and orthogonally arranged at the surface of the fibrils. Uranyl acetate counterstaining revealed that the main specific binding site is the ‘d’ band, which previous work indicated is very close to the initial site of calcification of type I collagen fibrils. Bone, deminer-alized by a ‘non-aqueous’ technique which preserves the proteoglycan in the tissue does not contain orthogonal arrays; the interfibrillar proteoglycan filaments are oriented parallel to the fibril axis. The main proteoglycan in bone is chondroitin sulphate-rich. It is suggested that dermatan sulphate proteoglycan plays a role in preventing soft connective tissues from calcifying.


Author(s):  
Arthur J. Wasserman ◽  
Kathy C. Kloos ◽  
David E. Birk

Type I collagen is the predominant collagen in the cornea with type V collagen being a quantitatively minor component. However, the content of type V collagen (10-20%) in the cornea is high when compared to other tissues containing predominantly type I collagen. The corneal stroma has a homogeneous distribution of these two collagens, however, immunochemical localization of type V collagen requires the disruption of type I collagen structure. This indicates that these collagens may be arranged as heterpolymeric fibrils. This arrangement may be responsible for the control of fibril diameter necessary for corneal transparency. The purpose of this work is to study the in vitro assembly of collagen type V and to determine whether the interactions of these collagens influence fibril morphology.


1991 ◽  
Vol 274 (2) ◽  
pp. 615-617 ◽  
Author(s):  
P Kern ◽  
M Menasche ◽  
L Robert

The biosynthesis of type I, type V and type VI collagens was studied by incubation of calf corneas in vitro with [3H]proline as a marker. Pepsin-solubilized collagen types were isolated by salt fractionation and quantified by SDS/PAGE. Expressed as proportions of the total hydroxyproline solubilized, corneal stroma comprised 75% type I, 8% type V and 17% type VI collagen. The rates of [3H]proline incorporation, linear up to 24 h for each collagen type, were highest for type VI collagen and lowest for type I collagen. From pulse-chase experiments, the calculated apparent half-lives for types I, V and VI collagens were 36 h, 10 h and 6 h respectively.


2009 ◽  
Vol 102 (4) ◽  
Author(s):  
S. G. Gevorkian ◽  
A. E. Allahverdyan ◽  
D. S. Gevorgyan ◽  
A. L. Simonian

2016 ◽  
Vol 92 ◽  
pp. 1175-1182 ◽  
Author(s):  
Meilian Zou ◽  
Huan Yang ◽  
Haibo Wang ◽  
Haiyin Wang ◽  
Juntao Zhang ◽  
...  

2008 ◽  
Vol 94 (6) ◽  
pp. 2204-2211 ◽  
Author(s):  
Lanti Yang ◽  
Kees O. van der Werf ◽  
Carel F.C. Fitié ◽  
Martin L. Bennink ◽  
Pieter J. Dijkstra ◽  
...  

Nanoscale ◽  
2014 ◽  
Vol 6 (14) ◽  
pp. 8134-8139 ◽  
Author(s):  
Hai-Nan Su ◽  
Li-Yuan Ran ◽  
Zhi-Hua Chen ◽  
Qi-Long Qin ◽  
Mei Shi ◽  
...  

The large distribution ofD-spacing values of type I collagen fibrils was due to image drift during measurement, and theD-spacing values were nearly identical both within a single fibril bundle and in different fibril bundles, exhibiting only a narrow distribution of 2.5 nm.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 358 ◽  
Author(s):  
Haiyan Ju ◽  
Xiuying Liu ◽  
Gang Zhang ◽  
Dezheng Liu ◽  
Yongsheng Yang

Native collagen fibrils (CF) were successfully extracted from bovine tendons using two different methods: modified acid-solubilized extraction for A-CF and pepsin-aided method for P-CF. The yields of A-CF and P-CF were up to 64.91% (±1.07% SD) and 56.78% (±1.22% SD) (dry weight basis), respectively. The analyses of both amino acid composition and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed that A-CF and P-CF were type I collagen fibrils. Both A-CF and P-CF retained the intact crystallinity and integrity of type I collagen’s natural structure by FTIR spectra, circular dichroism spectroscopy (CD) and X-ray diffraction detection. The aggregation structures of A-CF and P-CF were displayed by UV–Vis. However, A-CF showed more intact aggregation structure than P-CF. Microstructure and D-periodicities of A-CF and P-CF were observed (SEM and TEM). The diameters of A-CF and P-CF are about 386 and 282 nm, respectively. Although both A-CF and P-CF were theoretically concordant with the Schmitt hypothesis, A-CF was of evener thickness and higher integrity in terms of aggregation structure than P-CF. Modified acid-solubilized method provides a potential non-enzyme alternative to extract native collagen fibrils with uniform thickness and integral aggregation structure.


Sign in / Sign up

Export Citation Format

Share Document