Thermoelectric properties of fine grained (75% Sb2Te3-25% Bi2Te3)p-type and (90% Bi2Te3-5% Sb2Te3-5% Sb2Se3)n-type alloys

1992 ◽  
Vol 27 (5) ◽  
pp. 1250-1254 ◽  
Author(s):  
F. A. A. Amin ◽  
A. S. S. Al-Ghaffari ◽  
M. A. A. Issa ◽  
A. M. Hassib
2020 ◽  
Vol 11 ◽  
pp. 15-25
Author(s):  
L. D. Ivanova ◽  
◽  
Yu. V. Granatkina ◽  
I. Yu. Nikhezina ◽  
A. G. Malchev ◽  
...  

The microstructure and thermoelectric properties of materials based on germanium telluride p-type conductivity doped with copper and bismuth obtained by hot pressing of three types powders prepared by grinding an ingot to a size of hundreds microns (0.315  mm) to hundreds of nanometers (mechanical activation) in planetary high-energy mill and melt spinning were investigated. The microstructure of the samples were analyzed by optical and electron scanning microscopies. The nanoscale grain structure of these samples was established. The thermoelectric characteristics of the materials: Seebeck coefficient, electrical and thermal conductivities, were measured both at room temperature and in the temperature range of 100 – 800 K. The slopes of these dependencies are estimated. The coefficient of thermoelectric figure of merit is calculated. The higher thermoelectric efficiency (ZT = 1.5 at 600 K) was received for the samples hot-pressed from granules, prepared by melt spinning.


2010 ◽  
Vol 1267 ◽  
Author(s):  
Elena Koukharenko ◽  
Xiaohong Li ◽  
Jekaterina Kuleshova ◽  
Marcel Fowler ◽  
Nicole Frety ◽  
...  

AbstractThis study shows for the first time, the correlation between the microstructural properties (chemical composition and its homogeneity) and the thermoelectric properties for p-type Bi0.5Sb1.5Te3 electroplated films (10-15 μm thickness). High microstructural quality of Bi0.5Sb1.5Te3 electroplated films (a close to stoichiometry chemical composition with its high homogeneity elements distribution) was achieved by using an additive in the plating solution (sodium ligninsulfonate) as a surfactant agent. A fine-grained microstructure of 280 nm to 1μm has been observed for these materials, which half that of the plated films without a surfactant. The thermoelectric properties of electrodeposited Bi0.5Sb1.5Te3 films obtained without microstructural optimisation, show modest Seebeck coefficient values of 20-120 μm/K, electrodeposited film with an optimised microstructure exhibits very high values of Seebeck coefficient of 220-300 μm/K.


2021 ◽  
Vol 127 ◽  
pp. 105721
Author(s):  
Suchitra Yadav ◽  
Sujeet Chaudhary ◽  
Dinesh K. Pandya

Author(s):  
Dong Han ◽  
Rahma Moalla ◽  
Ignasi Fina ◽  
Valentina M. Giordano ◽  
Marc d’Esperonnat ◽  
...  

Author(s):  
Vidushi Galwadu Arachchige ◽  
Hasbuna Kamila ◽  
Aryan Sankhla ◽  
Léo Millerand ◽  
Silvana Tumminello ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3448
Author(s):  
Francisco Arturo López Cota ◽  
José Alonso Díaz-Guillén ◽  
Oscar Juan Dura ◽  
Marco Antonio López de la Torre ◽  
Joelis Rodríguez-Hernández ◽  
...  

This contribution deals with the mechanochemical synthesis, characterization, and thermoelectric properties of tetrahedrite-based materials, Cu12-xMxSb4S13 (M = Fe2+, Zn2+, Cd2+; x = 0, 1.5, 2). High-energy mechanical milling allows obtaining pristine and substituted tetrahedrites, after short milling under ambient conditions, of stoichiometric mixtures of the corresponding commercially available binary sulfides, i.e., Cu2S, CuS, Sb2S3, and MS (M = Fe2+, Zn2+, Cd2+). All the target materials but those containing Cd were obtained as single-phase products; some admixture of a hydrated cadmium sulfate was also identified by XRD as a by-product when synthesizing Cu10Cd2Sb4S13. The as-obtained products were thermally stable when firing in argon up to a temperature of 350–400 °C. Overall, the substitution of Cu(II) by Fe(II), Zn(II), or Cd(II) reduces tetrahedrites’ thermal and electrical conductivities but increases the Seebeck coefficient. Unfortunately, the values of the thermoelectric figure of merit obtained in this study are in general lower than those found in the literature for similar samples obtained by other powder processing methods; slight compositional changes, undetected secondary phases, and/or deficient sintering might account for some of these discrepancies.


Sign in / Sign up

Export Citation Format

Share Document