Ultrasonic monitoring of welded joints of nickel-free high-alloy austenitic steels

1985 ◽  
Vol 21 (4) ◽  
pp. 204-206
Author(s):  
N. V. Khimchenko ◽  
V. A. Bobrov ◽  
A. M. Sel'din ◽  
V. I. Logvinov
2015 ◽  
Vol 60 (3) ◽  
pp. 1807-1812
Author(s):  
M. Stolecki ◽  
H. Bijok ◽  
Ł. Kowal ◽  
J. Adamiec

Abstract This paper describes the technology of welding of finned tubes made of the X5CrNi1810 (1.4301) austenitic steel, developed at Energoinstal SA, allowing one to get high quality joints that meet the requirements of the classification societies (PN-EN 15614), and at the same time to significantly reduce the manufacturing costs. The authors described an automatic technological line equipped with a Trumph disc laser and a tube production technological process. To assess the quality of the joints, one performed metallographic examinations, hardness measurements and a technological attempt to rupture the fin. Analysis of the results proved that the laser-welded finned tubes were performed correctly and that the welded joints had shown no imperfections.


2021 ◽  
Vol 890 ◽  
pp. 141-146
Author(s):  
Mihail Aurel Țîțu ◽  
Dumitru Mnerie ◽  
Diana Cristina Dragomir ◽  
Gabriela Victoria Mnerie

The scientific paper presents an extensive research on modeling and optimizing the technological parameters of the process for processing by processing electric discharges with massive electrode with and without magnetic activation. Scientific research is based on real data collected from the process of electrical discharges performed on various samples extracted from areas of welded joints of metal components made of high alloy steel. The processing of experimental data was performed both classically and actively, especially the method of the central factorial experiment composed of orthogonal and rotary. The process parameters that were initially modeled and subsequently optimized were based on a series of independent variables characteristic of dimensional processing by copying the shape of the electrical discharge processing. Subsequent research conclusions and directions, as well as original contributions, are an experimentally validated point of view and worthy of consideration. All these fundamental ideas highlighted above find their explanations and the corresponding explicit treatment in the content of this scientific paper that addresses both managers at all levels and researchers.


2021 ◽  
Vol 313 ◽  
pp. 94-105
Author(s):  
A. Bernatskyi ◽  
V. Sydorets ◽  
O.M. Berdnikova ◽  
I. Krivtsun ◽  
O. Kushnarova

Extending the lifetime of energy facilities is extremely important today. This is especially true of nuclear power plants, the closure (or modernization) of which poses enormous financial and environmental problems. High-quality repair of reactors can significantly extend their service life. One of the critical parts is heat exchangers, the tubes of which quite often fail. Sealing, as a type of repair of heat exchanger tubes by the plugs, is promising provided that the joint quality is high. Practical experience in the use of welding to solve this problem has shown the need to search technological solutions associated with increasing the depth of penetration and reducing the area of thermal effect. The aim of the work was to develop a highly efficient technology for repair and extension of service life of heat exchangers of nuclear power plants based on the results of studying the technological features of laser welding of joints of dissimilar austenitic steels AISI 321 and AISI 316Ti in the vertical spatial position. Based on the results of the analysis of mechanical test data, visual and radiographic control, impermeability tests and metallographic studies of welded joints, the appropriate modes of laser welding of plugs have been determined. The principal causes of defects during laser welding of annular welded joints of dissimilar stainless steels are determined and techniques for their elimination and prevention of their formation are proposed. Based on the results of the research, technological recommendations for laser welding of plugs in the heat exchange tube of the collector are formulated, which significantly improves the technology of repair of steam generators of nuclear power plants and extends the service life of reactors.


1987 ◽  
Vol 23 (7) ◽  
pp. 356-360
Author(s):  
N. V. Khimchenko ◽  
V. V. Volokitin ◽  
V. A. Bobrov ◽  
V. I. Mulyukin

2016 ◽  
Vol 1138 ◽  
pp. 49-55
Author(s):  
Marek Slováček ◽  
Josef Tejc ◽  
Mojmír Vaněk

Welding as a modern, highly efficient production technology found its position in almost all industries. At the same time the demands on the quality of the welded joints have been constantly growing in all production areas. Great demand on the quality of the welded joints consequently causes more experimental or prototype – so called – validation joints that take place before the welding of final construction. These experiments, prototypes aim at – for instance – defining the appropriate welding technology, material, pre-heating, welding parameters, clamping condition and optimizing the welding process. Naturally, these experiments and prototypes make production more expensive. Numerical simulations of welding – in the area of production preparation as well as of production proper – have been frequently used recently. Numerical simulations supported by experimental measurements can simulate the actual welding process very close to reality. The new material models for hardness and mechanical properties prediction based on numerical simulation solution will be introduced.The paper covers some typical welding cases from energy industrial sector. The homogenous and heterogeneous weld joints from modern energy Cr-Mo-Ni-V steels (including modern austenitic steels) were done as prototype welding. The numerical simulation of these weld joints including post weld heat treatment process were done and welding technologies were optimised based on the numerical simulation results. The calculated hardness was compared with real measurements. During project the complete material properties which are needed for numerical simulation were measured. Simplify numerical lifetime prediction of weld joints including results from numerical welding analyse (as residual stresses and plastic deformation) were done.


2011 ◽  
Vol 278 ◽  
pp. 466-471 ◽  
Author(s):  
Jerzy Pasternak ◽  
Janusz Dobrzanski

The continuously developing power generation sector, including boilers with supercritical parameters, requires applications of new creep-resistant steel grades for construction of boilers steam superheater components. Therefore, this paper contains selected information, results of the research and implementation process including: - evaluation, comparison of requested properties of base material and welded joints, such as tensile strength, impact strength and technological properties, - destructive examinations with evaluation of welded joints and HAZ structure and hardness distribution, - influence of manufacturing process in large boilermaker conditions and after simulated operation. A new creep-resistant steels to be used, in order to comply with the operational requirements, as to assure the appropriate reliability and safety of the boiler equipment in operation process. This document presents a simplified analysis of martensitic steels from group 9-12% Cr (T91, T92, HCM12A, VM12) and austenitic steels Cr-Ni (TP347FG, SUPER 304H, HR3C), having the chemical composition as presented in tables 1 and 2, which are to be applied for steam superheater components.


Applied laser ◽  
2015 ◽  
Vol 35 (2) ◽  
pp. 196-202
Author(s):  
杨兆华 Yang Zhaohua ◽  
陈长军 Chen Changjun ◽  
王晓南 Wang Xiaonan ◽  
张敏 Zhang Min ◽  
朱广江 Zhu guangjiang

2018 ◽  
Vol 284 ◽  
pp. 344-350 ◽  
Author(s):  
Vera V. Berezovskaya ◽  
A.V. Berezovskiy ◽  
D.H. Hilfi

High nitrogen austenitic steels are used as structural materials required possessing high strength and fracture toughness. The present study is concerned with the characteristic features (shape, size, properties and structure) of the laser welded joints in Cr-Mn-, Cr-Mn-Mo-high nitrogen steels compared to the ones of Cr-Ni-steel joint. Butt welded joints were made using carbon dioxide laser with a maximum output of 5 kW in the continuous wave mode. The hardness and tensile tests of welded joints in the air and 3.5 vol.%-solution of NaCl, as well as the theoretical studies were carried out by optical and transmission electron microscopy (TEM). The results are achieved by testing that the welded joints of HNS had satisfactory weldability, adequately high mechanical and corrosion properties. The austenite of the investigated HNS retains high stability throughout the welding cycle.


Sign in / Sign up

Export Citation Format

Share Document