Plasma-sprayed cordierite: structure and transformations

1989 ◽  
Vol 24 (3) ◽  
pp. 811-815 ◽  
Author(s):  
H. G. Wang ◽  
G. S. Fischman ◽  
H. Herman
Author(s):  
K.R. Subramanian ◽  
A.H. King ◽  
H. Herman

Plasma spraying is a technique which is used to apply coatings to metallic substrates for a variety of purposes, including hardfacing, corrosion resistance and thermal barrier applications. Almost all of the applications of this somewhat esoteric fabrication technique involve materials in hostile environments and the integrity of the coatings is of paramount importance: the effects of process variables on such properties as adhesive strength, cohesive strength and hardness of the substrate/coating system, however, are poorly understood.Briefly, the plasma spraying process involves forming a hot plasma jet with a maximum flame temperature of approximately 20,000K and a gas velocity of about 40m/s. Into this jet the coating material is injected, in powder form, so it is heated and projected at the substrate surface. Relatively thick metallic or ceramic coatings may be speedily built up using this technique.


Author(s):  
P. Frayssinet ◽  
J. Hanker ◽  
D. Hardy ◽  
B. Giammara

Prostheses implanted in hard tissues cannot be processed for electron microscopic examination or microanalysis in the same way as those in other tissues. For these reasons, we have developed methods allowing light and electron microscopic studies as well as microanalysis of the interface between bone and a metal biomaterial coated by plasma-sprayed hydroxylapatite(HA) ceramic.An HA-coated titanium hip prosthesis (Corail, Landos, France), which had been implanted for two years, was removed after death (unrelated to the orthopaedic problem). After fixation it was dehydrated in solutions of increasing ethanol concentration prior to embedment in polymethylmethacrylate(PMMA). Transverse femur sections were obtained with a diamond saw and the sections then carefully ground to a thickness of 200 microns. Plastic-embedded sections were stained for calcium with a silver methenamine modification of the von Kossa method for calcium staining and coated by carbon. They have been examined by back-scatter SEM on an ISI-SS60 operated at 25 KV. EDAX has been done on cellular inclusions and extracellular bone matrix.


1990 ◽  
Vol 51 (C5) ◽  
pp. C5-393-C5-402
Author(s):  
A. FERRIERE ◽  
G. FLAMANT ◽  
J.-F. ROBERT ◽  
P. PEKSHEV ◽  
I. SMUROV ◽  
...  

2018 ◽  
Vol 18 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Mohammed J Kadhim ◽  
Mohammed H Hafiz ◽  
Maryam A Ali Bash

The high temperature corrosion behavior of thermal barrier coating (TBC) systemconsisting of IN-738 LC superalloy substrate, air plasma sprayed Ni24.5Cr6Al0.4Y (wt%)bond coat and air plasma sprayed ZrO2-20 wt% ceria-3.6 wt% yttria (CYSZ) ceramic coatwere characterized. The upper surfaces of CYSZ covered with 30 mg/cm2 , mixed 45 wt%Na2SO4-55 wt% V2O5 salt were exposed at different temperatures from 800 to 1000 oC andinteraction times from 1 up to 8 h. The upper surface plan view of the coatings wereidentified for topography, roughness, chemical composition, phases and reaction productsusing scanning electron microscopy, energy dispersive spectroscopy, talysurf, and X-raydiffraction. XRD analyses of the plasma sprayed coatings after hot corrosion confirmed thephase transformation of nontransformable tetragonal (t') into monoclinic phase, presence ofYVO4 and CeVO4 products. Analysis of the hot corrosion CYSZ coating confirmed theformation of high volume fraction of YVO4, with low volume fractions of CeOV4 and CeO2.The formation of these compounds were combined with formation of monoclinic phase (m)from transformation of nontransformable tetragonal phase (t').


Sign in / Sign up

Export Citation Format

Share Document