Lipid peroxidation of skeletal muscle: an in vitro study

1983 ◽  
Vol 3 (7) ◽  
pp. 609-619 ◽  
Author(s):  
M. J. Jackson ◽  
D. A. Jones ◽  
R. H. T. Edwards

The process of lipid peroxidation of skeletal muscle has been examined in vitro by monitoring the autoxidation of skeletal-muscle homogenates. Skeletal-muscle tissue has been shown to have considerable capacity for autoxidation and the process has been found to be initiated by a free-radical-mediated mechanism, critically dependent on the presence of free iron in the homogenate. The initiating radicals have not been firmly identified, but the results suggest that neither superoxide or hydroxyl radicals are involved. An in vitro technique for assessment of the antioxidant capacity of muscle tissue has also been developed which is capable of demonstrating differences between muscle tissues with differing vitamin E contents.

Bone ◽  
2001 ◽  
Vol 29 (4) ◽  
pp. 317-322 ◽  
Author(s):  
M.M Levy ◽  
C.J Joyner ◽  
A.S Virdi ◽  
A Reed ◽  
J.T Triffitt ◽  
...  

2011 ◽  
Vol 232 (4) ◽  
pp. 703-711 ◽  
Author(s):  
Meeta Lavania ◽  
Jyotsana Dalal ◽  
Simrita Cheema ◽  
Chandra Shekhar Nautiyal ◽  
Banwari Lal

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1411
Author(s):  
Minghao Nie ◽  
Ai Shima ◽  
Kenta Fukushima ◽  
Yuya Morimoto ◽  
Shoji Takeuchi

Muscle tissues can be fabricated in vitro by culturing myoblast-populated hydrogels. To counter the shrinkage of the myoblast-populated hydrogels during culture, a pair of anchors are generally utilized to fix the two ends of the hydrogel. Here, we propose an alternative method to counter the shrinkage of the hydrogel and fabricate plane-shaped skeletal muscle tissues. The method forms myoblast-populated hydrogel in a cylindrical cavity with a central pillar, which can prevent tissue shrinkage along the circumferential direction. By eliminating the usages of the anchor pairs, our proposed method can produce plane-shaped skeletal muscle tissues with uniform width and thickness. In experiments, we demonstrate the fabrication of plane-shaped (length: ca. 10 mm, width: 5~15 mm) skeletal muscle tissue with submillimeter thickness. The tissues have uniform shapes and are populated with differentiated muscle cells stained positive for myogenic differentiation markers (i.e., myosin heavy chains). In addition, we show the assembly of subcentimeter-order tissue blocks by stacking the plane-shaped skeletal muscle tissues. The proposed method can be further optimized and scaled up to produce cultured animal products such as cultured meat.


Author(s):  
Christine T. Nguyen ◽  
Majid Ebrahimi ◽  
Penney M. Gilbert ◽  
Bryan Andrew Stewart

Recently, methods for creating three-dimensional (3D) human skeletal muscle tissues from myogenic cell lines have been reported. Bioengineered muscle tissues are contractile and respond to electrical and chemical stimulation. In this study we provide an electrophysiological analysis of healthy and dystrophic 3D bioengineered skeletal muscle tissues. We focus on Duchenne muscular dystrophy (DMD), a fatal muscle disorder involving the skeletal muscle system. The dystrophin gene, which when mutated causes DMD, encodes for the Dystrophin protein, which anchors the cytoskeletal network inside of a muscle cell to the extracellular matrix outside the cell. Here, we enlist a 3D in vitro model of DMD muscle tissue, to evaluate an understudied aspect of DMD, muscle cell electrical properties uncoupled from presynaptic neural inputs. Our data shows that electrophysiological aspects of DMD are replicated in the 3D bioengineered skeletal muscle tissue model. Furthermore, we test a block co-polymer, poloxamer 188, and demonstrate capacity for improving the membrane potential in DMD muscle. Therefore, this study serves as the baseline for a new in vitro method to examine potential therapies directed at muscular disorders.


2000 ◽  
Vol 89 (1) ◽  
pp. 169-175 ◽  
Author(s):  
Carole Groussard ◽  
Isabelle Morel ◽  
Martine Chevanne ◽  
Michel Monnier ◽  
Josianne Cillard ◽  
...  

Divergent literature data are found concerning the effect of lactate on free radical production during exercise. To clarify this point, we tested the pro- or antioxidant effect of lactate ion in vitro at different concentrations using three methods: 1) electron paramagnetic resonance (EPR) was used to study the scavenging ability of lactate toward the superoxide aion (O2 −·) and hydroxyl radical (·OH); 2) linoleic acid micelles were employed to investigate the lipid radical scavenging capacity of lactate; and 3) primary rat hepatocyte culture was used to study the inhibition of membrane lipid peroxidation by lactate. EPR experiments exhibited scavenging activities of lactate toward both O2 −· and ·OH; lactate was also able to inhibit lipid peroxidation of hepatocyte culture. Both effects of lactate were concentration dependent. However, no inhibition of lipid peroxidation by lactate was observed in the micelle model. These results suggested that lactate ion may prevent lipid peroxidation by scavenging free radicals such as O2 −· and ·OH but not lipid radicals. Thus lactate ion might be considered as a potential antioxidant agent.


2020 ◽  
Author(s):  
Christine T Nguyen ◽  
Majid Ebrahmi ◽  
Penney M Gilbert ◽  
Bryan A Stewart

AbstractRecently, methods for creating three-dimensional (3D) human skeletal muscle tissues from myogenic cell lines have been reported. Bioengineered muscle tissues are contractile and respond to electrical and chemical stimulation. In this study we provide an electrophysiological analysis of healthy and dystrophic 3D bioengineered skeletal muscle tissues. We focus on Duchenne muscular dystrophy (DMD), a fatal muscle disorder involving the skeletal muscle system. The dystrophin gene, which when mutated causes DMD, encodes for the Dystrophin protein, which anchors the cytoskeletal network inside of a muscle cell to the extracellular matrix outside the cell. Here, we enlist a 3D in vitro model of DMD muscle tissue, to evaluate an understudied aspect of DMD, muscle cell electrical properties uncoupled from presynaptic neural inputs. Our data shows that electrophysiological aspects of DMD are replicated in the 3D bioengineered skeletal muscle tissue model. Furthermore, we test a block co-polymer, poloxamer 188, and demonstrate capacity for improving the membrane potential in DMD muscle.Therefore, this study serves as the baseline for a new in vitro method to examine potential therapies directed at muscular disorders.


2004 ◽  
Vol 171 (4S) ◽  
pp. 295-295
Author(s):  
Fernando C. Delvecchio ◽  
Ricardo M. Brizuela ◽  
Karen J. Byer ◽  
W. Patrick Springhart ◽  
Saeed R. Khan ◽  
...  

Author(s):  
Selva Bilge ◽  
Emre Ergene ◽  
Ebru Talak ◽  
Seyda Gokyer ◽  
Yusuf Osman Donar ◽  
...  

AbstractSkeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical conductivity was provided by carbonaceous material (CM) derived from algae-based biomass. The synthesis of this conductive and functional CM consisted of eco-friendly synthesis procedure such as pre-carbonization and multi-walled carbon nanotube (MWCNT) catalysis. CM obtained from biomass via hydrothermal carbonization (CM-03) and its ash form (CM-03K) were doped within poly(ɛ-caprolactone) (PCL) matrix and 3D printed to form scaffolds with aligned fibers for structural biomimicry. Scaffolds were seeded with C2C12 mouse myoblasts and subjected to electrical stimulation during the in vitro culture. Enhanced myotube formation was observed in electroactive groups compared to their non-conductive counterparts and it was observed that myotube formation and myotube maturity were significantly increased for CM-03 group after electrical stimulation. The results have therefore showed that the CM obtained from macroalgae biomass is a promising novel source for the production of the electrically conductive scaffolds for skeletal muscle tissue engineering.


2021 ◽  
Vol 8 (1) ◽  
pp. 6
Author(s):  
Divya Gupta ◽  
Jeffrey W. Santoso ◽  
Megan L. McCain

Engineered in vitro models of skeletal muscle are essential for efficiently screening drug safety and efficacy. However, conventional culture substrates poorly replicate physical features of native muscle and do not support long-term culture, which limits tissue maturity. Micromolded gelatin hydrogels cross-linked with microbial transglutaminase (gelatin-MTG hydrogels) have previously been shown to induce C21C2 myotube alignment and improve culture longevity. However, several properties of gelatin-MTG hydrogels have not been systematically characterized, such as changes in elastic modulus during incubation in culture-like conditions and their ability to support sarcomere maturation. In this study, various gelatin-MTG hydrogels were fabricated and incubated in ambient or culture-like conditions. Elastic modulus, mass, and transmittance were measured over a one- or two-week period. Compared to hydrogels in phosphate buffered saline (PBS) or ambient air, hydrogels in Dulbecco’s Modified Eagle Medium (DMEM) and 5% CO2 demonstrated the most stable elastic modulus. A subset of gelatin-MTG hydrogels was micromolded and seeded with C2C12 or primary chick myoblasts, which aligned and fused into multinucleated myotubes with relatively mature sarcomeres. These data are important for fabricating gelatin-MTG hydrogels with predictable and stable mechanical properties and highlight their advantages as culture substrates for engineering relatively mature and stable muscle tissues.


Sign in / Sign up

Export Citation Format

Share Document