Solutions for the flow of a conducting power-law fluid in a transverse magnetic field and with a pressure gradient using Crocco variables

1999 ◽  
Vol 137 (3-4) ◽  
pp. 225-235 ◽  
Author(s):  
T. C. Chiam
1971 ◽  
Vol 48 (3) ◽  
pp. 429-461 ◽  
Author(s):  
C. J. N. Alty

The paper presents an approximate analysis for high Hartmann number of the flow of an electrically conducting, incompressible fluid in a duct of square crosssection, having one pair of opposite walls insulating, and the other pair perfectly conducting and inclined at arbitrary orientation to a uniform transverse magnetic field. The flow is considered to be either pressure-driven with the two perfectly conducting electrodes short-circuited together or electrically driven by a potential difference applied between these electrodes in the absence of axial pressure gradient. The paper describes experiments on the pressure-driven, short circuited case using mercury in copper ducts to investigate the variation of the streamwise pressure gradient and of the potential distribution along one insulating wall with orientation, magnetic field and flow rate.At general orientations the analysis suggests and the experiments confirm the existence of regions of stationary fluid in the corners of the duct, together with viscous shear layers parallel to the magnetic field. For the case in which the electrodes are parallel to the magnetic field the experimental results for the pressure gradient, but not those for the potential distribution, agree reasonably well with Hunt & Stewartson's (1965) asymptotic solution. Both pressure gradient and potential results agree closely with the analysis by Hunt (1965) of the case in which the electrodes are perpendicular to the magnetic field.


1974 ◽  
Vol 41 (3) ◽  
pp. 822-823 ◽  
Author(s):  
Dj. S. Djukic

The Galerkin approximative technique is used to solve the problem of stagnation in plane flow, the so-called “Hiemenz flow”, of a non-Newtonian power-law fluid in presence of a constant transverse magnetic field. The influence of the magnetic field strength on the wall shear stress is analyzed.


2009 ◽  
Vol 1 (2) ◽  
pp. 220-225 ◽  
Author(s):  
P. Sreeharireddy ◽  
A. S. Nagarajan ◽  
M. Sivaiah

In this paper, the flow of a viscous conducting liquid with uniform distribution of dust particles in a channel is considered under the influence of a uniform transverse magnetic field with pressure gradient varying linearly with time. The velocities of fluid and dust are found to decrease with the increase of the magnetic parameter. Further that the velocity of the fluid particles is observed to be more than that of dust particles.Keywords: Viscous conducting liquid; Uniform transverse magnetic field; Fluidization; Incompressible fluid; Stoke’s resistance coefficient. © 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v1i2.2280


2014 ◽  
Vol 19 (2) ◽  
pp. 259-273 ◽  
Author(s):  
N. Kishan ◽  
P. Kavitha

Abstract A fluid flow and heat transfer analysis of an electrically conducting non-Newtonian power law fluid flowing over a non-linear stretching surface in the presence of a transverse magnetic field taking into consideration viscous dissipation effects is investigated. The stretching velocity, the temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The flow is induced due to an infinite elastic sheet which is stretched in its own plane. The governing equations are reduced to non-linear ordinary differential equations by means of similarity transformations. By using quasi-linearization techniques first linearize the non linear momentum equation is linearized and then the coupled ordinary differential equations are solved numerically by an implicit finite difference scheme. The numerical solution is found to be dependent on several governing parameters, including the magnetic field parameter, power-law index, Eckert number, velocity exponent parameter, temperature exponent parameter, modified Prandtl number and heat source/sink parameter. A systematic study is carried out to illustrate the effects of these parameters on the fluid velocity and the temperature distribution in the boundary layer. The results for the local skin-friction coefficient and the local Nusselt number are tabulated and discussed.


Author(s):  
Falana Ayodeji ◽  
Babatope. O Pele

The problem of laminar boundary layer flow of power-law fluid over a continuous moving surface in the presence of a transverse magnetic field with velocity slip was investigated. The governing partial differential equations for the flow and heat transfer were transformed into non-linear ordinary differential equations using the similarity method. These equations were solved numerically by applying the fourth-order Runge-Kutta method with a shooting technique. The solution is found to be dependent on various parameters such as power-law index, magnetic field parameter, suction, and injection parameters. The effect of various flow parameters in the form of dimensionless quantities on the flow field is discussed and graphically presented. It was observed that an increase in the magnetic property results to a decrease flow of fluid velocity and also, an increase in the Prandtl number results to an increase in the rate of heat transfer.


Sign in / Sign up

Export Citation Format

Share Document