scholarly journals Magneto-Hydro Dynamic Flow and Heat Transfer of Nonnewtonian Power-Law Fluid Over a Non-Linear Stretching Surface with Viscous Dissipation

2014 ◽  
Vol 19 (2) ◽  
pp. 259-273 ◽  
Author(s):  
N. Kishan ◽  
P. Kavitha

Abstract A fluid flow and heat transfer analysis of an electrically conducting non-Newtonian power law fluid flowing over a non-linear stretching surface in the presence of a transverse magnetic field taking into consideration viscous dissipation effects is investigated. The stretching velocity, the temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The flow is induced due to an infinite elastic sheet which is stretched in its own plane. The governing equations are reduced to non-linear ordinary differential equations by means of similarity transformations. By using quasi-linearization techniques first linearize the non linear momentum equation is linearized and then the coupled ordinary differential equations are solved numerically by an implicit finite difference scheme. The numerical solution is found to be dependent on several governing parameters, including the magnetic field parameter, power-law index, Eckert number, velocity exponent parameter, temperature exponent parameter, modified Prandtl number and heat source/sink parameter. A systematic study is carried out to illustrate the effects of these parameters on the fluid velocity and the temperature distribution in the boundary layer. The results for the local skin-friction coefficient and the local Nusselt number are tabulated and discussed.

2013 ◽  
Vol 18 (2) ◽  
pp. 425-445 ◽  
Author(s):  
N. Kishan ◽  
B. Shashidar Reddy

The problem of a magneto-hydro dynamic flow and heat transfer to a non-Newtonian power-law fluid flow past a continuously moving flat porous plate in the presence of sucion/injection with heat flux by taking into consideration the viscous dissipation is analysed. The non-linear partial differential equations governing the flow and heat transfer are transformed into non-linear ordinary differential equations using appropriate transformations and then solved numerically by an implicit finite difference scheme. The solution is found to be dependent on various governing parameters including the magnetic field parameter M, power-law index n, suction/injection parameter ƒw, Prandtl number Pr and Eckert number Ec. A systematical study is carried out to illustrate the effects of these major parameters on the velocity profiles, temperature profile, skin friction coefficient and rate of heat transfer and the local Nusslet number.


Author(s):  
Falana Ayodeji ◽  
Babatope. O Pele

The problem of laminar boundary layer flow of power-law fluid over a continuous moving surface in the presence of a transverse magnetic field with velocity slip was investigated. The governing partial differential equations for the flow and heat transfer were transformed into non-linear ordinary differential equations using the similarity method. These equations were solved numerically by applying the fourth-order Runge-Kutta method with a shooting technique. The solution is found to be dependent on various parameters such as power-law index, magnetic field parameter, suction, and injection parameters. The effect of various flow parameters in the form of dimensionless quantities on the flow field is discussed and graphically presented. It was observed that an increase in the magnetic property results to a decrease flow of fluid velocity and also, an increase in the Prandtl number results to an increase in the rate of heat transfer.


2012 ◽  
Vol 03 (05) ◽  
pp. 425-435 ◽  
Author(s):  
Kerehalli Vinayaka Prasad ◽  
Seetharaman Rajeswari Santhi ◽  
Pampanna Somanna Datti

2021 ◽  
Vol 10 (1) ◽  
pp. 255-271
Author(s):  
Bhupendra K. Sharma ◽  
Chandan Kumawat

Abstract A study has been carried for a viscous, incompressible electrically conducting MHD blood flow with temperature-dependent thermal conductivity and viscosity through a stretching surface in the presence of thermal radiation, viscous dissipation, and chemical reaction. The flow is subjected to a uniform transverse magnetic field normal to the flow. The governing coupled partial differential equations are converted into a set of non-linear ordinary differential equations (ODE) using similarity analysis. The resultant non-linear coupled ordinary differential equations are solved numerically using the boundary value problem solver (bvp4c) in MATLAB with a convincible accuracy. The effects of the physical parameters such as viscosity parameter ( μ ( T ˜ b ) ) \left({\mu ({{\tilde T}_b})} \right) , permeability parameter (β), magnetic field parameter (M), Local Grashof number (Gr) for thermal diffusion, Local modified Grashof number for mass diffusion (Gm), the Eckert number (Ec), the thermal conductivity parameter ( K ( T ˜ b ) ) \left({K({{\tilde T}_b})} \right) on the velocity, temperature, concentration profiles, skin-friction coefficient, Nusselt number, and Sherwood number are presented graphically. The physical visualization of flow parameters that appeared in the problem is discussed with the help of various graphs to convey the real life application in industrial and engineering processes. A comparison has been made with previously published work and present study revels the good agreement with the published work. This study will be helpful in the clinical healing of pathological situations accompanied by accelerated circulation.


2018 ◽  
Vol 23 (3) ◽  
pp. 689-705
Author(s):  
K. Saritha ◽  
M.N. Rajasekhar ◽  
B.S. Reddy

Abstract A numerical model is developed to study the Soret and Dufour effects on MHD boundary layer flow of a power-law fluid over a flat plate with velocity, thermal and solutal slip boundary conditions. The governing equations for momentum, energy and mass are transformed to a set of non-linear coupled ordinary differential equations by using similarity transformations. These non-linear ordinary differential equations are first linearized using a quasi-linearization technique and then solved numerically based on the implicit finite difference scheme over the entire range of physical parameters with appropriate boundary conditions. The influence of various governing parameters along with velocity, thermal and mass slip parameters on velocity, temperature and concentration fields are examined graphically. Also, the effects of slip parameters, the Soret and Dufour number on the skin friction, Nusselt number and Sherwood number are studied. Results show that the increase in the Soret number leads to a decrease in the temperature distribution and to an increase in concentration fields.


2016 ◽  
Vol 27 (12) ◽  
pp. 1650150 ◽  
Author(s):  
Mohamed Abd El-Aziz ◽  
Ahmed A. Afify

The symmetry group of MHD boundary layer flow and heat transfer of a non-Newtonian power-law fluid over a stretching surface under the effects of variable fluid properties is investigated. The similarity equations with the corresponding boundary conditions are solved numerically by using a shooting method with the fourth order Runge–Kutta integration scheme. Comparisons of the numerical method with the existing results in the literature are made and obtained an excellent agreement. It is observed that the heat transfer rate diminishes with an increase in magnetic parameter and variable thermal conductivity parameter. Further, the opposite influence is found with an increase in variable viscosity parameter.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 813
Author(s):  
Natalia C. Roşca ◽  
Ioan Pop

The present paper studies the flow and heat transfer of the hybrid nanofluids flows induced by a permeable power-law stretching/shrinking surface modulated orthogonal surface shear. The governing partial differential equations were converted into non-linear ordinary differential equations by using proper similarity transformations. These equations were then solved applying a numerical technique, namely bvp4c solver in MATLAB. Results of the flow field, temperature distribution, reduced skin friction coefficient and reduced Nusselt number were deduced. It was found that increasing mass flux parameter slows down the velocity and, hence, decreases the temperature. Furthermore, on enlarging the stretching parameter, the velocity and temperature increases and decreases, respectively. In addition, that the radiation parameter can effectively control the thermal boundary layer. Finally, the temperature decreases when the values of the temperature parameter increases. We apply similarity transformation in order to transform the governing model into a system of ODEs (ordinary differential equations). Numerical solutions for particular values of involved parameters are in very good agreement with previous calculations. The most important and interesting result of this paper is that for both the cases of shrinking and stretching sheet flows exhibit dual solutions in some intervals of the shrinking and stretching parameter. In spite of numerous published papers on the flow and heat transfer over a permeable stretching/shrinking surface in nanofluids and hybrid nanofluids, none of the researchers studied the present problem. Therefore, we believe that the results of the present paper are new, and have many industrial applications.


Sign in / Sign up

Export Citation Format

Share Document