A real-time digital simulation model of the electromagnetic transients of a double-circuit high-voltage line on the same tower

1995 ◽  
Vol 78 (5) ◽  
pp. 331-338 ◽  
Author(s):  
Z. Feng ◽  
Q. Zhou ◽  
H. Wu ◽  
R. Unbehauen
2021 ◽  
Vol 25 (4 Part B) ◽  
pp. 2983-2990
Author(s):  
Shufeng Zhang

To make up for the lack of domestic research on the dynamic model of the unit in a gas-steam combined cycle power plant, the thesis researched and established a real-time digital simulation model of the combined cycle power plant unit. Firstly, the theory found a non-real-time digital simulation model in MATLAB/SIMULINK environment. Then the paper converts it into C language code and uses the C Builder tool to encapsulate it into a simulation model that can run in real-time. Finally, the thesis conducted a simulation test on the model on real-time digital simulation and compared it with the field test results. The simulation results show that the combined cycle power plant unit model we have established can meet the real-time simulation requirements of the power system in terms of computational efficiency and model accuracy.


2009 ◽  
Vol 18 (3-4) ◽  
pp. 47-54 ◽  
Author(s):  
J.J. Zenor ◽  
D.J. Murray-Smith ◽  
E.W. McGookin ◽  
R.E. Crosbie

2021 ◽  
Vol 13 (11) ◽  
pp. 2078
Author(s):  
Ning Liu ◽  
Qin Zhang ◽  
Shuangcheng Zhang ◽  
Xiaoli Wu

Real-time cycle slip detection and repair is one of the key issues in global positioning system (GPS) high precision data processing and application. In particular, when GPS stations are in special environments, such as strong ionospheric disturbance, sea, and high-voltage transmission line interference, cycle slip detection and repair in low elevation GPS observation data are more complicated than those in normal environments. For low elevation GPS undifferenced carrier phase data in different environments, a combined cycle slip detection algorithm is proposed. This method uses the first-order Gauss–Markov stochastic process to model the pseudorange multipath in the wide-lane phase minus narrow-lane pseudorange observation equation, and establishes the state equation of the wide-lane ambiguity with the pseudorange multipath as a parameter, and it uses the Kalman filter for real-time estimation and detects cycle slips based on statistical hypothesis testing with a predicted residual sequence. Meanwhile, considering there are certain correlations among low elevation, observation epoch interval, and ionospheric delay error, a second-order difference geometry-free combination cycle slip test is constructed that takes into account the elevation. By combining the two methods, real-time cycle slip detection for GPS low elevation satellite undifferenced data is achieved. A cycle slip repair method based on spatial search and objective function minimization criterion is further proposed to determine the correct solution of the cycle slips after they are detected. The whole algorithm is experimentally verified using the static and kinematic measured data of low elevation satellites under four different environments: normal condition, high-voltage transmission lines, dynamic condition in the sea, and ionospheric disturbances. The experimental results show that the algorithm can detect and repair cycle slips accurately for low elevation GPS undifferenced data, the difference between the float solution and the true value for the cycle slip does not exceed 0.5 cycle, and the differences obey the normal distribution overall. At the same time, the wide-lane ambiguity and second-order difference GF combination sequence calculated by the algorithm is smoother, which give further evidence that the algorithm for cycle slip detection and repair is feasible and effective, and has the advantage of being immune to the special observation environments.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 474
Author(s):  
Junxi Wang ◽  
Qi Jia ◽  
Gangui Yan ◽  
Kan Liu ◽  
Dan Wang

With the development of large-scale new energy, the wind–thermal bundled system transmitted via high-voltage direct current (HVDC) has become the main method to solve the problem of wind power consumption. At the same time, the problem of subsynchronous oscillation among wind power generators, high-voltage direct current (HVDC), and synchronous generators (SGs) has become increasingly prominent. According to the dynamic interaction among doubly fed induction generators (DFIGs), HVDC, and SGs, a linearization model of DFIGs and SGs transmitted via HVDC is established, and the influence of the electromagnetic transient of wind turbines and HVDC on the electromechanical transient processes of SGs is studied. Using the method of additional excitation signal injection, the influence of the main factors of DFIG on the damping characteristics of each torsional mode of SG is analyzed, including control parameters and operation conditions when the capacity of HVDC is fixed. The mechanism of the negative damping torsional of SGs is identified. A time-domain simulation model is built in Electromagnetic Transients including DC/Power Systems Computer Aided Design (EMTDC/PSCAD) to verify the correctness and effectiveness of the theoretical analysis.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 644
Author(s):  
Michal Frivaldsky ◽  
Jan Morgos ◽  
Michal Prazenica ◽  
Kristian Takacs

In this paper, we describe a procedure for designing an accurate simulation model using a price-wised linear approach referred to as the power semiconductor converters of a DC microgrid concept. Initially, the selection of topologies of individual power stage blocs are identified. Due to the requirements for verifying the accuracy of the simulation model, physical samples of power converters are realized with a power ratio of 1:10. The focus was on optimization of operational parameters such as real-time behavior (variable waveforms within a time domain), efficiency, and the voltage/current ripples. The approach was compared to real-time operation and efficiency performance was evaluated showing the accuracy and suitability of the presented approach. The results show the potential for developing complex smart grid simulation models, with a high level of accuracy, and thus the possibility to investigate various operational scenarios and the impact of power converter characteristics on the performance of a smart gird. Two possible operational scenarios of the proposed smart grid concept are evaluated and demonstrate that an accurate hardware-in-the-loop (HIL) system can be designed.


Sign in / Sign up

Export Citation Format

Share Document