A comparison of radiation effects on mammalian cells in vitro caused by X-rays, high energy neutrons and negative pions

1978 ◽  
Vol 15 (1) ◽  
pp. 57-75 ◽  
Author(s):  
R. Wider�e
1957 ◽  
Vol 106 (4) ◽  
pp. 485-500 ◽  
Author(s):  
Theodore T. Puck ◽  
Dimitry Morkovin ◽  
Philip I. Marcus ◽  
Steven J. Cieciura

Survival curves of normal human cells from a variety of tissues exposed to varying doses of x-irradiation have been constructed, which permit definition of the intrinsic radiation sensitivity of the reproductive power of each cell type. The mean lethal dose of x-irradiation for all the cells employed, including those from normal and cancerous organs, those exhibiting diploid and polyploid chromosome number; those from embryonic and adult tissues, including recently isolated cells and cultures which had been maintained in vitro for many years, and cells exhibiting either epithelioid or fibroblastic morphology, was found to be contained between the limits of 50 to 150 r. Other similarities in the pattern of radiation effects, such as giant formation and abortive colonial growth, in these cells and that of the HeLa S3, previously studied, confirm the hypothesis that the pattern of reaction to x-irradiation previously elucidated, is representatative, at least in over-all outline, for a large variety of human cells. While the radiation survival curves of various human cells are similar in the gross, small but important characterizing differences have been found. All epithelioid cells so far studied are approximately 2-hit, and more radioresistant than the fibroblast-like cells whose survival data correspond to a mean lethal dose of around 60 r, and which so far can be fitted by either 1-hit or 2-hit curves. The earlier prediction that the major radiobiologic damage to mammalian cells is lodged in the genetic apparatus was confirmed by the demonstration of high frequency of mutants among the survivors of doses of 500 to 900 r. All the data on the x-radiosensitivity of these cells can be explained on the basis of a defect resulting from primary damage localized in one or more chromosomes. These considerations afford a convincing explanation of several aspects of the mammalian radiation syndrome.


Nature ◽  
1973 ◽  
Vol 243 (5408) ◽  
pp. 450-453 ◽  
Author(s):  
CARMIA BOREK ◽  
ERIC J. HALL
Keyword(s):  

1956 ◽  
Vol 103 (2) ◽  
pp. 273-284 ◽  
Author(s):  
Theodore T. Puck ◽  
Philip I. Marcus ◽  
Steven J. Cieciura

Two methods for simple and rapid plating of single HeLa cells, human, carcinomatous cells, are described. These result in growth and formation of colonies from each single cell. One of these procedures uses irradiated, non-multiplying "feeder" cells to condition the medium. The second requires more gentle handling of the cells, but otherwise is virtually the same as that used in plating bacteria on semisolid, nutrient media. By extension of these methods, it is possible to isolate single mutant colonies and grow pure clonal stocks of animal cells. These genetically uniform strains are much more homogeneous in their behavior than the parental HeLa cell population. Growth curves obtained from developing colonies are highly reproducible. The most active mutant stocks so far isolated display a generation time of 18 to 20 hours. In pooled human serum HeLa cells assume a highly stretched, ameboid form, with marked motility; whereas growth of the same cells in a variety of non-human sera results in tightly packed, columnar, epithelial-like morphology. The two cell types possess volumes, nuclear cross-sections, plating efficiencies, and generation times which are identical within experimental error, but display widely different cross-sectional areas, suggesting that the basic change occurs in the cell surface. It is conceivable that this change may be related to that which enables the cells of a compact tumor to become invasive. Animal cells subjected to the standard trypsinization procedures which involve mechanical trauma and repeated washings in incomplete media leak large amounts of P and suffer impaired ability to reproduce as isolated cells. Application of the methods described in this paper as a tool for quantitative study of normal mammalian cell growth, physiology, genetics, and biochemistry, and the response of cells to drugs, viruses, high energy radiation, and other agents have been indicated.


1963 ◽  
Vol 41 (11) ◽  
pp. 2343-2351 ◽  
Author(s):  
S. Mak ◽  
J. E. Till

The use of isotopically labeled 5-iodo-2′-deoxyuridine (I125UdR) for determination of the rate of deoxyribonucleic acid synthesis in mammalian cells in vitro has been investigated. The results obtained indicate that for this purpose I125UdR is a suitable substitute for the more commonly used DNA precursor, tritium-labeled thymidine (H3TdR). I125UdR appears to be incorporated specifically into the DNA of cells in culture, and has been demonstrated to compete with H3TdR, although the Km for H3TdR was smaller than that of I125UdR by a factor of approximately 4. The amount of label incorporated into DNA of cells increased linearly with time. When the rate of DNA synthesis was reduced by exposure of the cells to various doses of X-rays, the ratio of I125UdR incorporation to H3TdR incorporation into DNA of cells was found to be a constant, which supports the view that uptake of the analogue provides as reliable an indication of effects upon the rate of DNA synthesis as does that of H3TdR. The chief advantage of I125UdR over H3TdR is that I125 is a gamma emitter, so that the difficulties encountered in detection of the low energy beta particles from H3 may be avoided.


2010 ◽  
Vol 22 (1) ◽  
pp. 250
Author(s):  
W. E. Snyder ◽  
J. T. Aaltonen ◽  
H. D. Sigal ◽  
N. M. Loskutoff

This study examined the effects of X-rays on bovine oocytes used for in vitro embryo production. In recent years, airport security has become more stringent and the use of X-ray screening may be required for all items, which could be problematic when transporting oocytes. Ionizing radiation such as X-rays are high-energy particles that can penetrate into the nucleus of a cell and cause single and double-strand breaks in the DNA chain. Oocytes exposed to X-ray radiation may have DNA damage affecting maturation, fertilization, and embryonic development. Bovine ovaries obtained from a local abattoir were used to collect immature oocytes by follicular aspiration. The oocytes were divided into a control group and an experimental group then placed in maturation medium. The oocytes in the experimental group were placed in a hospital X-ray machine with a single exposure of 100 mA, 120 kVp for 0.3 s. This exposure challenged the oocytes with a comparable, calculated amount of mrems equivalent to a single screening from an airport X-ray machine (30 mrems). After X-ray exposure, the experimental group was cultured with the control at 37°C and 5% CO2. After 18 h, cryopreserved bovine sperm were thawed and processed using BoviPure (Nidacon International, Mölndal, Sweden) density gradient centrifugation and the oocytes were inseminated with 1 × 106 sperm in fertilization medium at 37°C and 5% CO2. After 24 h, both groups were transferred to 50-μL droplets of G1 medium (Vitrolife, Göteborg, Sweden) at 37°C and 6% CO2 and both were transferred into G2 medium after 72 h. Development of the oocytes was scored after an additional 72 h. Results were based on 2 criteria: the percent cleaved (presumptive fertilization) and the percent cleaved that developed to morula and blastocyst stages. The results indicated no significant difference in the percentages of oocytes cleaving after insemination for the control and experimental groups (P = 0.403, chi-square test). However, there was a significant increase (P = 0.037, chi-square test) in the percentages of morulae and blastocysts developing in the control (non-irradiated) v. experimental (X-rayed) groups. The outcome of this study cautions on the potential damage caused to bovine oocytes used for embryo production in vitro when exposed to X-ray electromagnetic radiation during routine air transport screening operations. Table 1.


1992 ◽  
Vol 147 (1) ◽  
pp. 215-219 ◽  
Author(s):  
Issac Kaver ◽  
Warren W. Koontz ◽  
John D. Wilson ◽  
John M. Guice ◽  
M.J.V. Smith

1968 ◽  
Vol 70 (2) ◽  
pp. 152-162
Author(s):  
R. H. Mole

As the three previous papers in this Symposium have shown (Ord and Stocken 1968; Evans 1968; Court-Brown 1968) the exploration of radiation effects within the cell has its own intrinsic fascination quite apart from its relevance to an understanding of the phenomena which may be observed after irradiation of the complex organism, vertebrate or invertebrate. Whitmore (cf. Whitmore Gulyas and Botond 1965) has been one of the pioneer workers on a previously unsuspected phenomenon, the quantitatively substantial recovery of the ability to divide which occurs within the first hour or two after exposure to low LET radiation. In cultures of mammalian cells in vitro this kind of recovery was shown to have nothing to do with cell division, to occur at all stages of the cell cycle, and to be little, if at all, affected by a reduction in temperature which would be expected a priori to modify profoundly the rate of chemical reactions. Whitmore's technique for synchronising asynchronously dividing cell cultures by the selective suicide of DNA synthesising cells following the incorporation of radioactively labelled DNA precursors with high specific activity has a wide application (Whitmore and Gulyas 1966). Workers from his laboratory have proposed an interesting approach to the real meaning of “ability to divide” and “recovery” based on the idea that there is a certain probability of failure at each cell division and that this probability may be permanently increased by exposure to radiation (Till, McCulloch and Siminovitch 1964). Thus radiation damage may be expressed by failure of cell division not only at the first or second divisions after exposure but also at any subsequent division in the distant future.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vincent Paget ◽  
Mariam Ben Kacem ◽  
Morgane Dos Santos ◽  
Mohamed A. Benadjaoud ◽  
Frédéric Soysouvanh ◽  
...  

Abstract Based on classic clonogenic assay, it is accepted by the scientific community that, whatever the energy, the relative biological effectiveness of X-rays is equal to 1. However, although X-ray beams are widely used in diagnosis, interventional medicine and radiotherapy, comparisons of their energies are scarce. We therefore assessed in vitro the effects of low- and high-energy X-rays using Human umbilical vein endothelial cells (HUVECs) by performing clonogenic assay, measuring viability/mortality, counting γ-H2AX foci, studying cell proliferation and cellular senescence by flow cytometry and by performing gene analysis on custom arrays. Taken together, excepted for γ-H2AX foci counts, these experiments systematically show more adverse effects of high energy X-rays, while the relative biological effectiveness of photons is around 1, whatever the quality of the X-ray beam. These results strongly suggest that multiparametric analysis should be considered in support of clonogenic assay.


Sign in / Sign up

Export Citation Format

Share Document