Universal property of the Picard variety of a complete variety

1965 ◽  
Vol 158 (5) ◽  
pp. 293-296 ◽  
Author(s):  
C. S. Seshadri
1952 ◽  
Vol 4 ◽  
pp. 73-78
Author(s):  
Yûsaku Kawahara

In the book “Foundations of algebraic geometry” A. Weil proposed the following problem ; does every differential form of the first kind on a complete variety U determine on every subvariety V of U a differential form of the first kind? This problem was solved affirmatively by S. Koizumi when U is a complete variety without multiple point. In this note we answer this problem in affirmative in the case where V is a simple subvariety of a complete variety U (in §1). When the characteristic is 0 we may extend our result to a more general case but this does not hold for the case characteristic p≠0 (in §2).


Author(s):  
Mary Jane West-Eberhard

Modularity, like the responsiveness that gives rise to it during development and evolution, is a universal property of living things and a fundamental determinant of how they evolve. Modularity refers to the properties of discreteness and dissociability among parts and integration within parts. There are many other words for the same thing, such as atomization (Wagner, 1995), individualization (Larson and Losos, 1996), autonomy (Nijhout, 1991b), dislocation (Schwanwitsch, 1924), decomposability (Wimsatt, 1981), discontinuity (Alberch, 1982), gene nets (Bonner, 1988), subunit organization (West-Eberhard, 1992a, 1996), compartments or compartmentation (Garcia-Bellido et al., 1979; Zuckerkandl, 1994; Maynard-Smith and Szathmary, 1995; Kirschner and Gerhart, 1998), and compartmentalization (Gerhart and Kirschner, 1997). One purpose of this chapter is to give consistent operational meaning to the concept of modularity in organisms. Seger and Stubblefield (1996, p. 118) note that organisms show “natural planes of cleavage” among organ systems, biochemical pathways, life stages, and behaviors that allow independent selection of different ones. They ask, “What determines where these planes of cleavage are located” and suggest that a “theory of organic articulations” may give insight into the laws of correlation, without specifying what the laws of articulation may be. Wagner (1995, p. 282) recognizes the importance of modularity and proposes a “building block” concept of homology where structural units often correspond to units of function, but concludes (after Rosenberg, 1985) that “there exists no way to distinguish an adequate from an inadequate atomization of the organisms.” Here I propose that modularity has a specific developmental basis (see also West-Eberhard, 1989, 1992a, 1996; see also Larson and Losos, 1996). Modular traits are subunits of the phenotype that are determined by the switches or decision points that organize development, whether of morphology, physiology, or behavior. Development can be seen as a branching series of decision points, including those caused by physical borders such as membranes or contact zones of growing or diffusing parts (e.g., see Meinhardt, 1982; see also chapter 5, on development). Each decision point demarcates the expression or use of a trait—a modular set—and subordinate branches demarcate lower level modular subunits, producing modular sets within modular sets.


2018 ◽  
Vol 6 (1) ◽  
pp. 28-40 ◽  
Author(s):  
Weishi Liu

AbstractIn this work, we consider ionic flow through ion channels for an ionic mixture of a cation species (positively charged ions) and an anion species (negatively charged ions), and examine effects of a positive permanent charge on fluxes of the cation species and the anion species. For an ion species, and for any given boundary conditions and channel geometry,we introduce a ratio _(Q) = J(Q)/J(0) between the flux J(Q) of the ion species associated with a permanent charge Q and the flux J(0) associated with zero permanent charge. The flux ratio _(Q) is a suitable quantity for measuring an effect of the permanent charge Q: if _(Q) > 1, then the flux is enhanced by Q; if _ < 1, then the flux is reduced by Q. Based on analysis of Poisson-Nernst-Planck models for ionic flows, a universal property of permanent charge effects is obtained: for a positive permanent charge Q, if _1(Q) is the flux ratio for the cation species and _2(Q) is the flux ratio for the anion species, then _1(Q) < _2(Q), independent of boundary conditions and channel geometry. The statement is sharp in the sense that, at least for a given small positive Q, depending on boundary conditions and channel geometry, each of the followings indeed occurs: (i) _1(Q) < 1 < _2(Q); (ii) 1 < _1(Q) < _2(Q); (iii) _1(Q) < _2(Q) < 1. Analogous statements hold true for negative permanent charges with the inequalities reversed. It is also shown that the quantity _(Q) = |J(Q) − J(0)| may not be suitable for comparing the effects of permanent charges on cation flux and on anion flux. More precisely, for some positive permanent charge Q, if _1(Q) is associated with the cation species and _2(Q) is associated with the anion species, then, depending on boundary conditions and channel geometry, each of the followings is possible: (a) _1(Q) > _2(Q); (b) _1(Q) < _2(Q).


1978 ◽  
Vol 21 (2) ◽  
pp. 253-254
Author(s):  
Frank Zorzitto

Let k be a field. Two field extensions E, F of k are said to have a product- in the category of field extensions of k (see e.g. [1, p. 30]) if and only if there exist a field extension P of k and two k -isomorphisms P→ E, P→ F satisfying the following universal property. For any field extension K of k and any pair of k-isomorphisms K→E, K→F, there exists a unique k-isomorphism K→P such that the diagrams below commute.


1999 ◽  
Vol 121 (2) ◽  
pp. 333-340 ◽  
Author(s):  
James W. White

Earlier analytical solutions by White (1980, 1983, 1992, 1993) included Couette effects, transverse diffusion, and mass storage in a model lubrication equation for narrow width wavy surface high bearing number gas films. The model lubrication equation did not include longitudinal diffusion effects due to the high bearing number restriction. Crone et al. (1991), however, reported numerical solutions of the full Reynolds equation for a gimbal mounted slider subject to wavy surface roughness. The first objective of this work is to reconcile the differences observed between the reported results of White and those of Crone et al. for moving and stationary roughness. The second objective is to describe how to best apply what appears to be a universal property of a high bearing number gas film subjected to a rough surface. Each solution of the model lubrication equation by White (1980, 1983, 1992, 1993) produced a product term based on local gas pressure and clearance (Z = Ph) that is independent of roughness details but which is dependent on the statistical properties of the roughness. In the present work, this characteristic is treated as a universal property of all high bearing number rough surface gas films. The product variable Z = Ph is introduced into the generalized full lubrication equation, and the resulting lubrication equation is ensemble averaged before a solution is attempted. This removes the short length and time scale effects due to the surface roughness. Solution of the ensemble averaged equation for Z(x, y, t) then follows by standard analytical or numerical methods. The unaveraged pressure is then given by P(x, y, t) = Z(x, y, t)/h(x, y, t) and the ensemble averaged or mean pressure at a point is computed from Pm(x, y, t) = Z(x, y, t)E(1/h(x, y, t)), where E(1/h) represents the ensemble average of 1/h. Using this technique, numerical solutions of the full generalized lubrication equation based on kinetic theory were obtained for a low flying gimbal mounted slider. Results indicate that the nominal flying height increases and the minimum flying height decreases as surface roughness increases.


1992 ◽  
Vol 262 ◽  
Author(s):  
Irai Lo ◽  
W. C. Mitchel ◽  
C. E. Stutz ◽  
K. R. Evans ◽  
M. O. Manasreh

ABSTRACTWe have performed Shubnikov-de Haas (SdH) measurements on the AlxGa1-xSb/InAs QW's with x from 0.1 to 1.0 under the negative persistent photoconductivity (NPPC) conditions and confirmed the prediction of Ionized Deep Donor model that the NPPC effect is a universal property for the materials containing ionized deep donors at low temperatures. The time-dependent recombination (electron capture) of the ionized deep donors is similar to that of DX centers. The saturated reduction of carrier concentration in the InAs well increases with increasing x, and rises steeply at about x=0.4. The concentration of deep donors which cause the NPPC in the AlxGa1-xSb/InAs QW's increases with the Al composition.


1979 ◽  
Vol 75 ◽  
pp. 95-119 ◽  
Author(s):  
Hiroshi Saito

The group of cycles of codimension one algebraically equivalent to zero of a nonsingular projective variety modulo rational equivalence forms an abelian variety, i.e., the Picard variety. To the group of cycles of dimension zero and of degree zero, there corresponds an abelian variety, the Albanese variety. Similarly, Weil, Lieberman and Griffiths have attached complex tori to the cycles of intermediate dimension in the classical case. The aim of this article is to give a purely algebraic construction of such “intermediate Jacobian varieties.”


Sign in / Sign up

Export Citation Format

Share Document