Kinetics of nonisothermal crystallization and melting of normal high density and ultra-high molecular weight polyethylene blends

1989 ◽  
Vol 267 (7) ◽  
pp. 577-582 ◽  
Author(s):  
L. Minkova ◽  
M. Mihailov
Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1597
Author(s):  
Iman Jafari ◽  
Mohamadreza Shakiba ◽  
Fatemeh Khosravi ◽  
Seeram Ramakrishna ◽  
Ehsan Abasi ◽  
...  

The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.


2011 ◽  
Vol 471-472 ◽  
pp. 827-832 ◽  
Author(s):  
Mazatusziha Ahmad ◽  
Mat Uzir Wahit ◽  
Mohammed Rafiq Abdul Kadir ◽  
Khairul Zaman Mohd Dahlan

In this study, blends of ultra high molecular weight polyethylene/high density polyethylene/polyethylene glycol (UHMWPE/HDPE/PEG) and the composites containing Hydroxyapatite (HA) as reinforcement filler were prepared via single screw extruder nanomixer followed by compression moulding. PEG (2phr) was used as processing aid and HA loadings were varied from 10 to 50 phr. HDPE and PEG were introduced to improve the extrudability of UHMWPE. Rheological behavior was studied via capillary rheometer while flexural and izod impact tests were conducted in order to investigate the mechanical properties of the blends and composites. Melt viscosity of the blends was found to decrease with increasing shear rate indicating a pseudoplastic behaviour. Incorporation of PEG shows a synergism effect on the reduction of blends viscosity. Blend of 40% UHMWPE/ 60% HDPE/ 2 phr PEG was chosen as the optimum blend composition with a balance properties in terms of the mechanical properties and processability. The incorporation of HA fillers from 10 to 50 phr into the blend resulted in the increase of flexural modulus and flexural strength with a slight decline of impact strength values. It can be concluded that the composites having adequate strength and modulus within the range of cancellous bone properties were succesfully developed to be used as biomedical implant devices.


2018 ◽  
Vol 5 (7) ◽  
pp. 180394 ◽  
Author(s):  
Weijun Miao ◽  
Hao Zhu ◽  
Tianchen Duan ◽  
Hongbing Chen ◽  
Feng Wu ◽  
...  

High-density polyethylene (HDPE)/ultra-high-molecular-weight polyethylene (UHMWPE) fibre composites were prepared via solution crystallization to investigate the components of epitaxial crystal growth on a highly oriented substrate. Scanning electron microscopy morphologies of HDPE crystals on UHMWPE fibres revealed that the edge-on ribbon pattern crystals that were formed initially on UHMWPE fibres converted afterwards to a sheet shape as crystallization progressed. Wide-angle X-ray diffraction confirmed that the polymer chain oriented along the fibre axis and the orthorhombic crystal form of HDPE remained unchanged in HDPE/UHMWPE fibre composite systems. The thermal behaviour of the fibre composites measured by differential scanning calorimetry showed double melting peaks, the nature of which, as disclosed by partial melting experiments, is ascribed to bilayer components existing in the induced crystals: the inner layer is composed of more regularly folded chain crystals induced by UHMWPE fibres, and the outer layer formed on the inner one with a thinner and lower ordered crystal structure.


Sign in / Sign up

Export Citation Format

Share Document