Shear rate in the Couette viscometer with a narrow annular gap between cylinders. A new approximate formula

1975 ◽  
Vol 14 (11) ◽  
pp. 976-978 ◽  
Author(s):  
A. Apelblat ◽  
J. C. Healy ◽  
M. Joly
1968 ◽  
Vol 12 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Irvin M. Krieger

2020 ◽  
Vol 30 (1) ◽  
pp. 107-118
Author(s):  
Daniela Martins Marum ◽  
Maria Diná Afonso ◽  
Brian Bernardo Ochoa

Abstract Predicting drilling fluids rheology is crucial to control/optimize the drilling process and the gas extraction from drilling fluids in logging systems. A Couette viscometer measured the apparent viscosity of a bentonite mud at various shear rates and temperatures. The bentonite mud behaved as a yield-pseudoplastic fluid, and a modified Herschel-Bulkley model predicted the shear rate and temperature effects upon the shear stress. A pipe viscometer was built to seek a correlation between the mud flow rate and the pressure drop and thereby determine refined Herschel-Bulkley parameters. Coupling a rheological model to a pipe viscometer enables the continuous acquisition of apparent viscosities of Newtonian or non-Newtonian fluids at a rig-site surface.


2017 ◽  
Vol 8 (1) ◽  
pp. 27-32
Author(s):  
C. L. German ◽  
J. T. Podichetty ◽  
A. Muzhingi ◽  
B. Makununika ◽  
J. Smay ◽  
...  

Abstract Open defecation and poor fecal management facilitates the spread of disease. Viscous heating can pasteurize fecal sludge by creating a high shear field in the annular gap between a stationary, cylindrical outer shell and a rotating inner core. As sludge flows axially through the annular gap, thorough mixing and frictional heating eliminate cool spots where microbes may survive. A viscous heater (VH) compares favorably to a conventional heat exchanger, where cool slugs may occur. Computational fluid dynamics (CFD) was used to determine the effects of geometry and fluid rheology on VH performance over a range of conditions. A shear-rate and temperature-dependent rheological model was developed from experimental data, using a sludge simulant. CFD of an existing VH used the model to improve the original naïve design by including temperature and shear rate-dependent viscosity. CFD results were compared to experimental data at 132 and 200 L/hr to predict design and operating conditions for 1,000 L/hr. Subsequent experimentation with fecal sludge indicated that the CFD approach was valid for design and operation.


Author(s):  
Carlos D. Cheek ◽  
Steven W. Day

Blood clotting, or thrombosis, is an interesting biological application for computational fluid dynamics. Existing numerical thrombosis models have previously been shown to be effective for low shear rates and simple geometries. For these models to be used in biomedical applications such as the design of rotary blood pumps, however, they must first be experimentally validated for high shear rates and complex geometries. In this study, we test the ability of a numerical thrombosis model to predict thrombosis related phenomena in a high shear flow by creating a geometry similar to that of a rotary blood pump. We have applied an existing numerical thrombosis model to an annular gap between rotating concentric cylinders, a geometry that is closely related to rotary blood pumps. Additionally, we created a physical model of the same geometry and exposed blood to a range of shear rates in both the empirical and numerical model. The empirical and numerical results are compared in order to evaluate the ability of the numerical model to predict thrombosis in similar geometries, such as high shear blood handling pumps. Fluent was used to solve the coupled convective-diffusion equations along with user defined equations that include production and consumption of 7 species critical to thrombosis. These equations, along with equations of fluid motion, were solved iteratively within the Fluent solver. All reaction constants were from previously published work. At each of the shear rates and exposure times tested, the numerical model calculated platelet deposition, platelet-platelet aggregation and the two-dimensional distribution of three primary agonists (ADP, thromboxane and thrombin) in addition to the standard fluid variables (velocity, pressure, shear rate, etc.). A physical model was designed and constructed to control the shear rate that to which blood is exposed. An annular gap of 360μm was chosen in order to induce a shear rate of up to 10,000 s-1 while maintaining laminar flow. In a series of experiments, fresh, heparinized, bovine blood was exposed to a constant shear rate ranging from 1,000 to 10,000 s-1 for 120 seconds. Prothrombin time (PT) and activated partial thromboplastin time (APTT) of the blood was then measured for each stress level. While the observed changes in thromboembolitic potential (as measured by PT and APTT) of the whole blood test samples qualitatively correspond to platelet activation and agonist concentration predicted by the numerical model, further work is needed to quantitatively verify the numerical model. Thrombosis models based on coupled convective-diffusion equations show promise, but need further refinement and validation before they can be trusted to authoritatively predict thromboembolitic potential.


1994 ◽  
Vol 71 (01) ◽  
pp. 078-090 ◽  
Author(s):  
H L Goldsmith ◽  
M M Frojmovic ◽  
Susan Braovac ◽  
Fiona McIntosh ◽  
T Wong

SummaryThe effect of shear rate and fibrinogen concentration on adenosine diphosphate-induced aggregation of suspensions of washed human platelets in Poiseuille flow at 23°C was studied using a previously described double infusion technique and resistive particle counter size analysis (1). Using suspensions of multiple-centrifuged and -washed cells in Tyrodes-albumin [3 × 105 μl−1; (17)] with [fibrinogen] from 0 to 1.2μM, the, rate and extent of aggregation with 0.7 μM ADP in Tyrodes-albumin were measured over a range of mean transit times from 0.2 to 43 s, and at mean tube shear rates, Ḡ, = 41.9, 335 and 1,335 s−1. As measured by the decrease in singlet concentration, aggregation at 1.2 μM fibrinogen increased with increasing Ḡ up to 1,335 s1, in contrast to that previously reported in citratcd plasma, in which aggregation reached a maximum at Ḡ = 335 s−1. Without added fibrinogen, there was no aggregation at Ḡ = 41.9 s1; at Ḡ = 335 s1, there was significant aggregation but with an initial lag time, aggregation increasing further at Ḡ = 1,335 s−1. Without added fibrinogen, aggregation was abolished at all Ḡ upon incubation with the hexapeptide GRGDSP, but was almost unaffected by addition of an F(ab’)2 fragment of an antibody to human fibrinogen. Aggregation in the absence of added fibrinogen was also observed at 37°C. The activation of the multiple-washed platelets was tested using flow cytometry with the fluorescently labelled monoclonal antibodies FITC-PAC1 and FITC-9F9. It was shown that 57% of single cells in unactivated PRT expressed maximal GPIIb-IIIa fibrinogen receptors (MoAb PAC1) and 54% expressed pre-bound fibrinogen (MoAb 9F9), with further increases on ADP activation. However, incubation with GRGDSP and the F(ab’)2 fragment did not inhibit the prebound fibrinogen. Moreover, relatively unactivated cells (8% expressing receptor, 14% prebound fibrinogen), prepared from acidified cPRP by single centrifugation with 50 nM of the stable prostacyclin derivative, ZK 36 374, and resuspension in Tyrodes-albumin at 5 × 104 μl−1, aggregated with 2 and 5 μM ADP at Ḡ = 335 and 1,335 s−1 in the absence of added fibrinogen. We therefore postulate that a protein such as von Willebrand factor, secreted during platelet isolation or in flow at sufficiently high shear rates, may yield the observed shear-rate dependent aggregation without fibrinogen.


1989 ◽  
Vol 61 (03) ◽  
pp. 485-489 ◽  
Author(s):  
Eva Bastida ◽  
Lourdes Almirall ◽  
Antonio Ordinas

SummaryBlood platelets are thought to be involved in certain aspects of malignant dissemination. To study the role of platelets in tumor cell adherence to vascular endothelium we performed studies under static and flow conditions, measuring tumor cell adhesion in the absence or presence of platelets. We used highly metastatic human adenocarcinoma cells of the lung, cultured human umbilical vein endothelial cells (ECs) and extracellular matrices (ECM) prepared from confluent EC monolayers. Our results indicated that under static conditions platelets do not significantly increase tumor cell adhesion to either intact ECs or to exposed ECM. Conversely, the studies performed under flow conditions using the flat chamber perfusion system indicated that the presence of 2 × 105 pl/μl in the perfusate significantly increased the number of tumor cells adhered to ECM, and that this effect was shear rate dependent. The maximal values of tumor cell adhesion were obtained, in presence of platelets, at a shear rate of 1,300 sec-1. Furthermore, our results with ASA-treated platelets suggest that the role of platelets in enhancing tumor cell adhesion to ECM is independent of the activation of the platelet cyclooxygenase pathway.


1990 ◽  
Vol 63 (01) ◽  
pp. 112-121 ◽  
Author(s):  
David N Bell ◽  
Samira Spain ◽  
Harry L Goldsmith

SummaryThe effect of red blood cells, rbc, and shear rate on the ADPinduced aggregation of platelets in whole blood, WB, flowing through polyethylene tubing was studied using a previously described technique (1). Effluent WB was collected into 0.5% glutaraldehyde and the red blood cells removed by centrifugation through Percoll. At 23°C the rate of single platelet aggregtion was upt to 9× greater in WB than previously found in platelet-rich plasma (2) at mean tube shear rates Ḡ = 41.9,335, and 1,920 s−1, and at both 0.2 and 1.0 µM ADP. At 0.2 pM ADP, the rate of aggregation was greatest at Ḡ = 41.9 s−1 over the first 1.7 s mean transit time through the flow tube, t, but decreased steadily with time. At Ḡ ≥335 s−1 the rate of aggregation increased between t = 1.7 and 8.6 s; however, aggregate size decreased with increasing shear rate. At 1.0 µM ADP, the initial rate of single platelet aggregation was still highest at Ḡ = 41.9 s1 where large aggregates up to several millimeters in diameter containing rbc formed by t = 43 s. At this ADP concentration, aggregate size was still limited at Ḡ ≥335 s−1 but the rate of single platelet aggregation was markedly greater than at 0.2 pM ADP. By t = 43 s, no single platelets remained and rbc were not incorporated into aggregates. Although aggregate size increased slowly, large aggregates eventually formed. White blood cells were not significantly incorporated into aggregates at any shear rate or ADP concentration. Since the present technique did not induce platelet thromboxane A2 formation or cause cell lysis, these experiments provide evidence for a purely mechanical effect of rbc in augmenting platelet aggregation in WB.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1495-1504
Author(s):  
Fangchao Xu ◽  
Yongquan Guo ◽  
Ran Zhou ◽  
Junjie Jin ◽  
Chuan Zhao ◽  
...  

To solve the problem of reduction of suspension force of permanent magnet system with variable magnetic flux path control, according to the structure of the system, suspension principle of the permanent magnet system with variable magnetic flux path control and the generation principle of the load torque, the influence of the mechanical structure of the system on the suspension force is analyzed by changing part of parameters of the system structure. The results show that the existence of magnetic isolation plate is the main reason for the decrease of suspension force, the permanent magnet ring can be thickened to 11.91 mm, the annular gap can be reduced to 1 mm, thickness of the “F” shaped magnetizer can be increased to 9 mm to increase the suspension force.


2016 ◽  
Vol 52 (1) ◽  
pp. 125-134
Author(s):  
B. Mikhailovich ◽  
◽  
A. Shapiro ◽  
R. Stepanov ◽  
◽  
...  
Keyword(s):  
Mhd Flow ◽  

2012 ◽  
Vol 48 (1) ◽  
pp. 43-50 ◽  
Author(s):  
B. Mikhailovich ◽  
A. Shapiro ◽  
S. Sukoriansky ◽  
I. Zilberman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document