Computer processing of creep test results

1974 ◽  
Vol 6 (10) ◽  
pp. 1201-1204
Author(s):  
V. I. Kovpak ◽  
M. V. Baumshtein
Materials ◽  
1992 ◽  
pp. 127-132
Author(s):  
L. C. McDonald ◽  
K. T. Hartwig
Keyword(s):  

2013 ◽  
Vol 639-640 ◽  
pp. 493-497
Author(s):  
Woo Tai Jung ◽  
Sung Yong Choi ◽  
Young Hwan Park

The hydraulic loading device commonly used for creep test necessitates continuous recharge of the hydraulic pressure with time and is accompanied by slight variation of the permanent load at each recharge. Therefore, accurate test results cannot be obtained for long-term creep tests requiring time-dependent behavioral analysis during more than 6 months. This study conducts creep test as part of the analysis of the long-term characteristics of fiber-reinforced lean concrete sub-base of pavement. The creep test is executed using the new load-amplifier device not a conventional loading device. Since the results of the preliminary verification test on the new creep test device show that constant permanent load is applied without significant variation, it can be expected that more accurate measurement of the creep will be possible in a long-term compared to the conventional hydraulic device. In addition, the creep test results of sub-base specimens reveal the occurrence of large instantaneous elastic strain, differently from the strain curve observed in ordinary concrete, as well as the occurrence of small creep strain leading to low creep coefficient.


2015 ◽  
Vol 16 (1) ◽  
pp. 105-117
Author(s):  
Artur Kurpiel ◽  
Adam Wysokowski

Abstract The creep test under the static loading, that allows to determine rheological properties of asphalt based on the creep curve, is the most effective test nowadays. Applied loads are non-destructive and allow to observe the course of the strain after the test load. The test can be carried out on compressing, shearing, bending as well as on triaxial test, that depends on the applied apparatus implementing different intensity [1, 2, 3, 4, 5, 6]. Based on the creep test, the stress of different properties can be specified. Among them there are valuable rheological properties based on selected viscoelascity models [1]. The properties of the viscoelascity models are relevant indexes depicting resistance to deformation. They can be used to forecast the wheel-truck in the accepted rheological model [1]. In this article it is shown the impact of different rheological properties of the viscoelacity model on the wheel-truck as well as the impact of different properties on shape and the course of the creep curve. The asphalt mixtures presented in this article are characterized by variable rheological properties. It is therefore difficult to determine which property mostly affects the size of the strain. However, the authors of this article attempted to analyse the change of the asphalt strain value of the different variables in particular rheological model, called Bürgers’s model.


2014 ◽  
Vol 592-594 ◽  
pp. 739-743 ◽  
Author(s):  
J. Ganesh Kumar ◽  
K. Laha ◽  
M.D. Mathew

Small punch creep (SPC) testing technique is a material non-intensive testing technique for evaluating creep behavior of materials using miniature specimens. It can be used for remnant life assessment (RLA) studies on components in service, by scooping out limited material for testing without impairing the strength of component. In order to ensure the reliability of use of SPC technique for RLA, it is necessary to establish sound database on SPC properties of the material before putting into service. In this investigation, SPC technique was used to evaluate creep properties of 316LN stainless steel using specimens of size 10 x 10 x 0.5 mm. SPC tests were conducted in load controlled mode at 923 K and at various loads. SPC curves clearly exhibited primary, secondary and tertiary creep stages. The minimum deflection rate increased and rupture life decreased with an increase in applied load. Like in conventional creep test results, the minimum deflection rate obeyed Norton’s power law and Monkman-Grant relationship. SPC test was correlated with corresponding conventional creep test. Good correlation was established between creep rupture life values evaluated from SPC tests and conventional creep tests.


2021 ◽  
Author(s):  
Mohammad Hossein Zarghooni

A Structural Insulated Panel (SIP) is a panel composed of insulation core laminated between two oriented-strand boards (OSB). SIPs deliver building efficiencies by replacing several components of traditional residental and commercial construction, including: (i) studs; (ii) insulation; (iii) vapour barrier; and (iv) air barrier. A SIP-based structure offers superior insulation, exceptional strength, and fast installation. Besides those benefits, the total construction costs are less with SIPs compared to wood-framed homes, expecially when considering speed of construction, less expensive HVAC equipment required, reduced site waste, reduction construction financing costs, more favourable energy-efficient mortages available, and lower cost of owning a home built with SIPS. This thesis presents the experimental testing on selected SIP sizes to investigate their short- and long-term creep behavior under sustained loading. The experiment study performed in a manner to comply with applicable test methods and, Canadian Codes. Short-term creep test results showed the structural adequacy of the tested panels, while the long-term creep test results established the increase in panel total deflection with time. The ultimate load test results showed that the structural qualification of SIPs is "as good as" the structural capacity of the conventional wood-frame buildings.


2018 ◽  
Vol 195 ◽  
pp. 02028
Author(s):  
Achmad Basuki ◽  
Ali Awaludin ◽  
Bambang Suhendro ◽  
Suprapto Siswosukarto

This paper presents the results of creep tests of Laminated Veneer Lumber Sengon (LVL Sengon) beams, aiming to determine the creep factor and to establish the prediction beam deflection based on the initial creep test data. The LVL Sengon beams have a cross section of 40 mm by 80 mm and a clear span length of 2,000 mm, they were loaded at midspan for three different stress levels: 30%, 40%, and 50% of the ultimate load within 30, 60, and 90 days. Each loading level consists of four repetitive beams where one beam was wrapped with a plastic sheet. The test results showed that for 90 days the bending creep test can not determine the secondary creep yet. Curve fitting of bending creep test data indicated that the parameters of the Modified Burger creep model of the first 30 days can be accurately used to predict the beam deflection curve up to 60 and 90 days of loading.


2012 ◽  
Vol 446-449 ◽  
pp. 2608-2612 ◽  
Author(s):  
Li Hua Zhao

This paper using ABAQUS software to do the numerical simulation research for trabecular bending creep test of asphalt mixture , system analysis the internal stress distribution and deformation characteristics of the specimen, comparison research the test results and the fitting results, eventually get the method of determining the parameters to simulate the asphalt mixture creep behavior. As doing the numerical simulation for performance of asphalt mixture, which can give a practical significance for improve the asphalt mixture research level.


Sign in / Sign up

Export Citation Format

Share Document