Rotationally symmetric harmonic maps from a ball into a warped product manifold

1985 ◽  
Vol 53 (3) ◽  
pp. 235-254 ◽  
Author(s):  
Atsushi Tachikawa
2001 ◽  
Vol 27 (6) ◽  
pp. 327-339
Author(s):  
Gabjin Yun

Let(Mn,g)be a closed Riemannian manifold andNa warped product manifold of two space forms. We investigate geometric properties by the spectra of the Jacobi operator of a harmonic mapϕ:M→N. In particular, we show ifNis a warped product manifold of Euclidean space with a space form andϕ,ψ:M→Nare two projectively harmonic maps, then the energy ofϕandψare equal up to constant ifϕandψare isospectral. Besides, we recover and improve some results by Kang, Ki, and Pak (1997) and Urakawa (1989).


Author(s):  
Hironori Kumura

Let UB(p0; ρ1) × f MV be a cylindrically bounded domain in a warped product manifold := MB × fMV and let M be an isometrically immersed submanifold in . The purpose of this paper is to provide explicit radii of the geodesic balls of M which first exit from UB(p0; ρ1) × fMV for the case in which the mean curvature of M is sufficiently small and the lower bound of the Ricci curvature of M does not diverge to –∞ too rapidly at infinity.


2016 ◽  
Vol 13 (07) ◽  
pp. 1650099 ◽  
Author(s):  
Sameh Shenawy ◽  
Bülent Ünal

The purpose of this paper is to study the [Formula: see text]-curvature tensor on (singly) warped product manifolds as well as on generalized Robertson–Walker and standard static space-times. Some different expressions of the [Formula: see text]-curvature tensor on a warped product manifold in terms of its relation with [Formula: see text]-curvature tensor on the base and fiber manifolds are obtained. Furthermore, we investigate [Formula: see text]-curvature flat warped product manifolds. Many interesting results describing the geometry of the base and fiber manifolds of a [Formula: see text]-curvature flat warped product manifold are derived. Finally, we study the [Formula: see text]-curvature tensor on generalized Robertson–Walker and standard static space-times; we explore the geometry of the fiber of these warped product space-time models that are [Formula: see text]-curvature flat.


2014 ◽  
Vol 25 (14) ◽  
pp. 1450121 ◽  
Author(s):  
Haizhong Li ◽  
Yong Wei ◽  
Changwei Xiong

In this paper, we consider the closed embedded hypersurface Σ in the warped product manifold [Formula: see text] equipped with the metric g = dr2 + λ(r)2 gN. We give some characterizations of slice {r} × N by the condition that Σ has constant weighted higher-order mean curvatures (λ′)αpk, or constant weighted higher-order mean curvature ratio (λ′)αpk/p1, which generalize Brendle's [Constant mean curvature surfaces in warped product manifolds, Publ. Math. Inst. Hautes Études Sci. 117 (2013) 247–269] and Brendle–Eichmair's [Isoperimetric and Weingarten surfaces in the Schwarzschild manifold, J. Differential Geom. 94(3) (2013) 387–407] results. In particular, we show that the assumption convex of Brendle–Eichmair's result [Isoperimetric and Weingarten surfaces in the Schwarzschild manifold, J. Differential Geom. 94(3) (2013) 387–407] is unnecessary. Here pk is the kth normalized mean curvature of the hypersurface Σ. As a special case, we also give some characterizations of geodesic spheres in ℝn, ℍn and [Formula: see text], which generalize the classical Alexandrov-type results.


Filomat ◽  
2019 ◽  
Vol 33 (7) ◽  
pp. 2009-2016 ◽  
Author(s):  
Adara Blaga

We consider almost quasi-Yamabe solitons in Riemannian manifolds, derive a Bochner-type formula in the gradient case and prove that under certain assumptions, the manifold is of constant scalar curvature. We also provide necessary and sufficient conditions for a gradient almost quasi-Yamabe soliton on the base manifold to induce a gradient almost quasi-Yamabe soliton on the warped product manifold.


2019 ◽  
Vol 11 (2) ◽  
pp. 332-349
Author(s):  
Buddhadev Pal ◽  
Santu Dey ◽  
Sampa Pahan

Abstract In this paper, we study generalized quasi-Einstein warped products with respect to quarter symmetric connection for dimension n ≥ 3 and Ricci-symmetric generalized quasi-Einstein manifold with quarter symmetric connection. We also investigate that in what conditions the generalized quasi-Einstein manifold to be nearly Einstein manifold with respect to quarter symmetric connection. Example of warped product on generalized quasi-Einstein manifold with respect to quarter symmetric connection are also discussed.


2020 ◽  
Vol 57 ◽  
pp. 7-24
Author(s):  
Punam Gupta ◽  
Abdoul Salam Diallo

In this paper, we study the doubly warped product manifolds with semi-symmetric metric connection. We derive the curvature formulas for doubly warped product manifold with semi-symmetric metric connection in terms of curvatures of components of doubly warped product manifolds. We also prove the necessary and sufficient condition for a doubly warped product manifold to be a warped product manifold. We obtain some results for an Einstein doubly warped product manifold and Einstein-like doubly warped product manifold of class A with respect to a semi-symmetric metric connection.


2003 ◽  
Vol 18 (25) ◽  
pp. 1773-1782 ◽  
Author(s):  
F. Dahia ◽  
E. M. Monte ◽  
C. Romero

We investigate the dynamics of particles moving in a spacetime augmented by one extra dimension in the context of the induced matter theory of gravity. We examine the appearance of a fifth force as an effect caused by the extra dimension and discuss two different approaches to the fifth force formalism. We then give two simple examples of application of both approaches by considering the case of a Ricci-flat warped-product manifold and a generalized Randall–Sundrum space.


Sign in / Sign up

Export Citation Format

Share Document