Computation in kinetics, III. A new method for kinetic model search based on simultaneous regression estimation of rate constants, stoichiometry and/or reaction order

1989 ◽  
Vol 39 (1) ◽  
pp. 141-146 ◽  
Author(s):  
Josef Havel ◽  
José Luis González
Author(s):  
Yuri V. Polenov ◽  
Gleb A. Shestakov ◽  
Elena V. Egorova

A stoichiometric mechanism for full thiourea dioxide decomposition in aqueous solution under pH of 4.0 is proposed based on dependences of concentrations of thiourea dioxide and its decomposition products on the time and literature data. The concentration of thiourea dioxide was measured via iodometry, while the intermediates were quantified using the polarography. Polarography was carried out in glass two-electrode electrochemical cell by means of PU-1 polarograph in differential mode. Dropping mercury electrode was used as working one and silver chloride as a reference one. Rate constants for individual stages are obtained via mathematical modeling, presented a system of differential equations. Absolute errors of rate constants, correlation coefficients, and F-factors were also calculated. Verification of supposed kinetic model was conducted using the comparison between experimental and calculated concentrations, F-test and the calculated values of correlation coefficients of the individual stages of the process. Supposed kinetic model of decomposition consists of a number of consequent stages including various compounds such as sulfur monoxide, thiosulfuric, sulfuric, dithionic, hydrosulfuric acids as intermediates was used for previously obtained data for pH of 8.85. To test the universality of supposed model, we simulated kinetics of thiourea dioxide decomposition reaction at pH of 8.85. Experimental kinetic data were taken from literature. The initial approximations of the individual stages constants were taken from previous calculations. Analysis of calculated data: concentration values, F-test, correlation coefficients allowed to conclude about the applicability of proposed mechanism for the process of thiourea dioxide decomposition in a weakly alkaline medium.


1991 ◽  
Vol 276 (3) ◽  
pp. 777-784 ◽  
Author(s):  
S J Mellor ◽  
G L Atkins ◽  
D J S Hulmes

Type I procollagen processing in chick-embryo corneas was studied at days 12, 14 and 17 of development. Pulse-chase experiments and electrophoretic analysis of salt-soluble extracts showed developmental changes in the processing pathway. A kinetic model was fitted to the data to determine rate constants for processing of both N- and C-propeptides. Data for pro alpha 1(I)-chain processing and pro alpha 2(I)-chain processing were fitted separately (where pro means procollagen). Between days 12 and 17 the relative flux through the pC-collagen (procollagen chain lacking the N-propeptide) and pN-collagen (procollagen chain lacking the C-propeptide) pathways increased approx. 4-fold. Pro alpha 1(I) chains and pro alpha 2(I) chains were processed by slightly different routes. Variations in the rate constants were compared with electron-microscopic measurements of collagen fibril diameters at each stage of development. Diameters increased by less than 10% over the period from 12 to 17 days. It was concluded that fibril diameters are relatively insensitive to the pathway of procollagen processing in the salt-soluble pool.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chao Feng ◽  
Evgenii L. Kovrigin ◽  
Carol Beth Post

Abstract The ability of high-resolution NMR spectroscopy to readout the response of molecular interactions at multiple atomic sites presents a unique capability to define thermodynamic equilibrium constants and kinetic rate constants for complex, multiple-step biological interactions. Nonetheless, the extraction of the relevant equilibrium binding and rate constants requires the appropriate analysis of not only a readout that follows the equilibrium concentrations of typical binding titration curves, but also the lineshapes of NMR spectra. To best take advantage of NMR data for characterizing molecular interactions, we developed NmrLineGuru, a software tool with a user-friendly graphical user interface (GUI) to model two-state, three-state, and four-state binding processes. Application of NmrLineGuru is through stand-alone GUIs, with no dependency on other software and no scripted input. NMR spectra can be fitted or simulated starting with user-specified input parameters and a chosen kinetic model. The ability to both simulate and fit NMR spectra provides the user the opportunity to not only determine the binding parameters that best reproduce the measured NMR spectra for the selected kinetic model, but to also query the possibility that alternative models agree with the data. NmrLineGuru is shown to provide an accurate, quantitative analysis of complex molecular interactions.


2020 ◽  
Vol 22 (39) ◽  
pp. 22314-22323 ◽  
Author(s):  
R. R. Valiev ◽  
R. T. Nasibullin ◽  
V. N. Cherepanov ◽  
G. V. Baryshnikov ◽  
D. Sundholm ◽  
...  

A new method for calculating internal conversion rate constants (kIC), including anharmonic effects and using the Lagrangian multiplier technique, is proposed.


2019 ◽  
Vol 20 (19) ◽  
pp. 4911 ◽  
Author(s):  
Xie ◽  
Guo ◽  
Chen

A general kinetic model is presented for the chemomechanical coupling of dimeric kinesin molecular motors with and without extension of their neck linkers (NLs). A peculiar feature of the model is that the rate constants of ATPase activity of a kinesin head are independent of the strain on its NL, implying that the heads of the wild-type kinesin dimer and the mutant with extension of its NLs have the same force-independent rate constants of the ATPase activity. Based on the model, an analytical theory is presented on the force dependence of the dynamics of kinesin dimers with and without extension of their NLs at saturating ATP. With only a few adjustable parameters, diverse available single molecule data on the dynamics of various kinesin dimers, such as wild-type kinesin-1, kinesin-1 with mutated residues in the NLs, kinesin-1 with extension of the NLs and wild-type kinesin-2, under varying force and ATP concentration, can be reproduced very well. Additionally, we compare the power production among different kinesin dimers, showing that the mutation in the NLs reduces the power production and the extension of the NLs further reduces the power production.


Author(s):  
Iztok Hace

Free radical polymerization kinetics of diallyl terephthalate (DAT) in solution was investigated with two different peroxide initiators: dicyclohexyl peroxydicarbonate (CHPC) and benzoyl peroxide (BPO) in temperature range from 50°C to 110°C, where ortho-xylene was used as a solvent. Conversion points were measured using Fourier Transform Infrared (FTIR) measurements. Previously developed kinetic model for bulk DAT polymerization, was extended to solution DAT polymerization. The ratio of solvent chain - transfer rate constants to propagation rate constants of the polymerization system were found between 1.25 10-4 to 1.68 10-4 for various reaction conditions. They were obtained using the calculated initial polymerization rates and the number average molecular weight measurements made by GPC. The effect of different solvent fractions and initiator concentrations on the diffusion limitations were investigated. Only two kinetic parameters, kpd0 and ktd0 were obtained by fitting the kinetic model onto measured conversions for various reaction conditions at 0.2, 0.5 and 0.8 solvent fractions. Thus obtained kpd0 and ktd0 kinetic parameters were extrapolated to zero solvent fractions and from obtained values of kinetic parameters the conversion points for bulk DAT polymerization were calculated and compared to measured conversion points.


Sign in / Sign up

Export Citation Format

Share Document