Calculation of the mass transfer coefficient with a chemical reaction in a gas-liquid system

1977 ◽  
Vol 6 (3) ◽  
pp. 323-327 ◽  
Author(s):  
A. N. Gartsman ◽  
A. Ermakova ◽  
N. I. Rassadnikova
Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4329
Author(s):  
Radek Šulc ◽  
Jan Dymák

The gas–liquid hydrodynamics and mass transfer were studied in a concentric tube internal jet-loop airlift reactor with a conical bottom. Comparing with a standard design, the gas separator was equipped with an adjustable deflector placed above the riser. The effect of riser superficial gas velocity uSGR on the total gas holdup εGT, homogenization time tH, and overall volumetric liquid-phase mass transfer coefficient kLa was investigated in a laboratory bioreactor, of 300 mm in inner diameter, in a two-phase air–water system and three-phase air–water–PVC–particle system with the volumetric solid fraction of 1% for various deflector clearances. The airlift was operated in the range of riser superficial gas velocity from 0.011 to 0.045 m/s. For the gas–liquid system, when reducing the deflector clearance, the total gas holdup decreased, the homogenization time increased twice compared to the highest deflector clearance tested, and the overall volumetric mass transfer coefficient slightly increased by 10–17%. The presence of a solid phase shortened the homogenization time, especially for lower uSGR and deflector clearance, and reduced the mass transfer coefficient by 15–35%. Compared to the gas–liquid system, the noticeable effect of deflector clearance was found for the kLa coefficient, which was found approx. 20–29% higher for the lowest tested deflector clearance.


2016 ◽  
Vol 22 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Xiaolei Li ◽  
Chunying Zhu

In this study, the mass transfer accompanied by an instantaneous irreversible chemical reaction in a slurry bubble column containing sparingly soluble fine reactant particles has been analyzed theoretically. Based on the penetration theory, combining the cell model, a one-dimensional mass transfer model was developed. In the model, the effects of the particle size and the particle dissolution near the gas-liquid interface on the mass transfer were taken into account. The mass transfer model was solved and an analytical expression of the time-mean mass transfer coefficient was attained. The reactive absorption of SO2from gas mixtures into Mg(OH)2/water slurry was investigated experimentally in a bubble column reactor to validate the mass transfer model. The results indicate that the present model has good predicting performance and could be used to predict mass transfer coefficient for the complicated gas-liquid-solid three-phase system with an instantaneous irreversible chemical reaction.


Author(s):  
Lirong Li ◽  
Yong Tae Kang

Abstract CO2 absorption performance in gas-liquid system is affected by nanoparticles. The enhancement mechanisms involved have been extensively paid attention. The CO2 gas bubble behaviors and the characteristics of the nanoparticle motion have been clarified in the present study. The equivalent substitution method is used to regard the liquid with nanoparticles as a continuous term with changed physical properties, that is, nanofluid. Therefore, the volume-of-fluid (VOF) method is employed to well predict the gas bubble behaviors and mass transfer coefficient in nanofluid. It is found that the mass transfer coefficient in the gas-liquid system for CO2 absorption can be significantly enhanced by Al2O3 nanoparticles. With the increase of nanoparticles volume concentration, the surface renewal frequency increases dramatically. The discrete-particle-method (DPM) is adopted to track the motion of nanoparticles. In this way, the deformation of the bubbles and the motion of the nanoparticle are well captured. It is concluded that the enhanced mass transfer coefficient in gas-liquid-nanoparticle system is not only related to the Brownian motion of the particles, but also related to the nanoparticle deduced turbulence in the liquid field.


Author(s):  
Mahendra Kunju ◽  
James Nielsen ◽  
Yuanhang Chen ◽  
Otto L. Santos ◽  
Wesley C. Williams ◽  
...  

Abstract The influx of gas from formations during drilling or when the well is left undisturbed during tripping, logging, and flow check can dissolve very quickly in Non-aqueous drilling fluids (NAF). The dissolved gas can stay unnoticeable till the gas comes out of solution below bubble point pressure closer to surface. The objective of the paper is to develop a model to predict the time dependent mass transfer of CO2 in oil at subcritical pressures and validate the model using experimental results. Since CO2 is soluble in oil, the interaction between solvent and solute can help us understand the dissolution and mass transfer mechanism of CO2 in oil. A model has been developed by incorporating factors that drive the interaction and the rate of gas loading into the liquid to predict the time-dependent mass transfer. A 1.5 inch vertical low pressure apparatus is used to conduct experiments by injecting CO2 into pressurized static column of oil. Pressure inside the pipe, and mass of CO2 injected are varied to study their effects on mass transfer. Boundary conditions for this model are provided from experimentally obtained data of volumetric mass transfer coefficient of the injected gas and liquid system at gas injection flow rate. The developed time-dependent model has been validated using the data collected from the tests. The volumetric mass transfer coefficient is found to change with pressure. This model can be extended to experiments under high-pressures to replicate the downhole conditions. The model can be modified to include desorption to predict the loading and unloading of gas in NAF, and gas oil ratios at depths along the annulus in a real well.


Sign in / Sign up

Export Citation Format

Share Document