Water-use efficiency of one C3 and two C4 grasses in response to varying soil moisture and herbage-removal levels in a seasonally dry tropical region

1985 ◽  
Vol 88 (2) ◽  
pp. 171-180 ◽  
Author(s):  
K. P. Singh ◽  
Gopa Misra
2011 ◽  
Vol 59 (1) ◽  
pp. 13-22
Author(s):  
Z. Varga-Haszonits ◽  
E. Enzsölné Gerencsér ◽  
Z. Lantos ◽  
Z. Varga

The temporal and spatial variability of soil moisture, evapotranspiration and water use were investigated for winter barley. Evaluations were carried out on a database containing meteorological and yield data from 15 stations. The spatial distribution of soil moisture, evapotranspiration and water use efficiency (WUE) was evaluated from 1951 to 2000 and the moisture conditions during the growth period of winter barley were investigated. The water supply was found to be favourable, since the average values of soil moisture remained above the lower limit of favourable water content throughout the growth period, except for September–December and May–June. The actual evapotranspiration tended to be close to the potential evapotranspiration, so the water supplies were favourable throughout the vegetation period. The calculated values of WUE showed an increasing trend from 1960 to 1990, but the lower level of agricultural inputs caused a decline after 1990. The average values of WUE varied between 0.87 and 1.09 g/kg in different counties, with higher values in the northern part of the Great Hungarian Plain. The potential yield of winter barley can be calculated from the maximum value of WUE. Except in the cooler northern and western parts of the country, the potential yield of winter barley, based on the water supply, could exceed 10 t/ha.


1972 ◽  
Vol 8 (2) ◽  
pp. 171-175 ◽  
Author(s):  
I. P. Abrol ◽  
S. P. Dixit

SUMMARYA comparison has been made of drip and conventional check basin methods of irrigation, using onions and ladies finger as test crops. Significant increases in yield and water use efficiency in drip irrigated over conventionally irrigated plots resulted from increased availability of soil moisture at low tensions and reduced surface evaporation losses. Reduced soil strength in drip irrigated plots was also a factor resulting in increased yield of onions.


2021 ◽  
pp. 1-12
Author(s):  
R. Dietrich ◽  
F.W. Bell ◽  
M. Anand

Given the large contribution of forests to terrestrial carbon storage, there is a need to resolve the environmental and physiological drivers of tree-level response to rising atmospheric CO2. This study examines how site-level soil moisture influences growth and intrinsic water-use efficiency in sugar maple (Acer saccharum Marsh.). We construct tree-ring, δ18O, and Δ13C chronologies for trees across a soil moisture gradient in Ontario, Canada, and employ a structural equation modelling approach to ascertain their climatic, ontogenetic, and environmental drivers. Our results support previous evidence for the presence of strong developmental effects in tree-ring isotopic chronologies — in the range of −4.7‰ for Δ13C and +0.8‰ for δ18O — across the tree life span. Additionally, we show that the physiological response of sugar maple to increasing atmospheric CO2 depends on site-level soil moisture variability, with trees only in relatively wet plots exhibiting temporal increases in intrinsic water-use efficiency. These results suggest that trees in wet and mesic plots have experienced temporal increases in stomatal conductance and photosynthetic capacity, whereas trees in dry plots have experienced decreases in photosynthetic capacity. This study is the first to examine sugar maple physiology using a dendroisotopic approach and broadens our understanding of carbon–water interactions in temperate forests.


1984 ◽  
Vol 20 (2) ◽  
pp. 151-159
Author(s):  
D. Boobathi Babu ◽  
S. P. Singh

SUMMARYThe results of field experiments conducted in the spring seasons (February/March to June) of 1980 and 1981 indicate that grain yields of sorghum increased with increase in frequency of irrigation. Crops sprayed with atrazine or CCC yielded more than the unsprayed control; maximum yields were obtained by the application of atrazine at 200 g ha−1. Water use efficiency decreased with increase in irrigation but increased as a result of spraying crops with either chemical. Irrigation water can be saved by the spraying of atrazine or CCC onto spring-sown sorghum.


2002 ◽  
Vol 42 (7) ◽  
pp. 945 ◽  
Author(s):  
J. L. Jacobs ◽  
G. N. Ward ◽  
A. M. McDowell ◽  
G. Kearney

Effect of cultivation practice and sowing time on soil moisture retention at sowing, growth rates, dry matter yield, water use efficiency and nutritive characteristics (metabolisable energy, crude protein, neutral detergent fibre, water-soluble carbohydrates and starch) of turnip, pasja and rape was determined on 2 soil types (site A and B) over 2 years. Cultivation treatments were: optimum full inversion, an optimum non-inversion cultivation and over cultivated. At each site, cultivation treatments were imposed at 2 different times (early and late).Results showed few differences in soil moisture at sowing between the 3 cultivation systems. Where seedbeds were prepared earlier rather than later, soil moisture at sowing was higher. Given that there was relatively little difference in soil moisture between cultivation treatments within a sowing time, it is likely that rainfall events may have confounded cultivation effects.Apart from year 2 at site A, the water use efficiency of turnip was higher than for pasja and rape. It is proposed that the lower value in year 2 may be due to root development being retarded by low moisture availability, particularly at the later sowing date, thus leading to a lower dry matter yield.Despite no cultivation effects on soil moisture at sowing, there appeared to be clear advantages for the full inversion technique in terms of subsequent weed germination. Generally, weed numbers post germination were lower for this cultivation method compared with both non-inversion techniques. In conclusion, the cultivation techniques used had little effect on soil moisture at sowing and subsequent dry matter yields, provided the resultant seedbed was well-prepared, fine, firm and weed free. Full inversion cultivation techniques in areas where broad-leaved weeds are a problem may substantially reduce subsequent weed burdens. Early sowing where possible may reduce the likelihood of crop failure through the provision of adequate soil moisture at sowing and increase the incidence of rain during the growing period. Timing of sowing will vary according to paddock requirements during early spring (e.g. grazing or forage conservation), soil type, and trafficability for cultivation.


2016 ◽  
Vol 11 (8) ◽  
pp. 701-708
Author(s):  
Jos eacute Ara uacute jo da Silva Tonny ◽  
Franco Duarte Thiago ◽  
Val eacute ria Rodrigues Sousa Jackelinne ◽  
Maria Bonfim Silva Edna ◽  
Bicioni Pacheco Adriano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document