On the relation between the winds off southwest Africa and the Benguela Current and Agulhas Current penetration in the South Atlantic

1968 ◽  
Vol 21 (3) ◽  
pp. 109-117 ◽  
Author(s):  
I. I. Schell
Ocean Science ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 1067-1080
Author(s):  
Christina Schmidt ◽  
Franziska U. Schwarzkopf ◽  
Siren Rühs ◽  
Arne Biastoch

Abstract. The inflow of relatively warm and salty water from the Indian Ocean into the South Atlantic via Agulhas leakage is important for the global overturning circulation and the global climate. In this study, we analyse the robustness of Agulhas leakage estimates as well as the thermohaline property modifications of Agulhas leakage south of Africa. Lagrangian experiments with both the newly developed tool Parcels and the well established tool Ariane were performed to simulate Agulhas leakage in the eddy-rich ocean–sea-ice model INALT20 (1/20∘ horizontal resolution) forced by the JRA55-do atmospheric boundary conditions. The average transport, its variability, trend and the transit time from the Agulhas Current to the Cape Basin of Agulhas leakage is simulated comparably with both Lagrangian tools, emphasizing the robustness of our method. Different designs of the Lagrangian experiment alter in particular the total transport of Agulhas leakage by up to 2 Sv, but the variability and trend of the transport are similar across these estimates. During the transit from the Agulhas Current at 32∘ S to the Cape Basin, a cooling and freshening of Agulhas leakage waters occurs especially at the location of the Agulhas Retroflection, resulting in a density increase as the thermal effect dominates. Beyond the strong air–sea exchange around South Africa, Agulhas leakage warms and salinifies the water masses below the thermocline in the South Atlantic.


Ocean Science ◽  
2008 ◽  
Vol 4 (3) ◽  
pp. 223-237 ◽  
Author(s):  
V. Zharkov ◽  
D. Nof

Abstract. Recent proxies suggest that, at the end of the last glacial, there was a significant increase in the injection of Agulhas rings into the South Atlantic (SA). This brought about a dramatic increase in the salt-influx (from the Indian Ocean) into the SA helping re-start the then-collapsed meridional overturning cell (MOC), leading to the termination of the Younger Dryas (YD). Here, we propose a mechanism through which large variations in ring production take place. Using nonlinear analytical solutions for eddy shedding, we show that there are restricted possibilities for ring detachment when the coast is oriented in the north-south direction. We define a critical coastline angle below which there is rings shedding and above which there is almost no shedding. In the case of the Agulhas region, the particular shape of the African continent implies that rings can be produced only when the retroflection occurs beyond a specific latitude where the angle is critical. During glaciation, the wind stress curl (WSC) vanished at a latitude lower than that of the critical angle, which prohibited the retroflection from producing rings. When the latitude at which the WSC vanishes migrated poleward towards its present day position, the corresponding coastline angle decreased below the critical angle and allowed for a vigorous production of rings. Simple process-oriented numerical simulations (using the Bleck and Boudra model) are in satisfactory agreement with our results and enable us to affirm that, during the glacials, the behavior of the Agulhas Current (AC) was similar to that of the modern East Australian Current (EAC), for which the coastline slant is supercritical.


2021 ◽  
Author(s):  
Jonathan Wiskandt ◽  
Siren Ruehs ◽  
Franziska Schwarzkopf ◽  
Arne Biastoch

<p>The upper limb of the Atlantic Meridional Overturning Circulation (AMOC) is supplied in the South Atlantic from Drake Passage (DP) and Agulhas Leakage (AL). The relative contributions from DP and AL influence the stratification as well as the properties of the upper limb return flow and potentially impact the formation of deep water in the North Atlantic. <br>While early studies suggested a clear dominance of the AL contribution, recent studies indicate that the DP contribution is not negligible. Here, we use a set of Lagrangian experiments in the eddy-resolving (1/20 degree) ocean model INALT20 to analyze the inflow from DP into the South Atlantic in more detail. We find that the majority of water, that enters the subtropical South Atlantic across 30° S from DP, originates from the upper 2000 m of the northern branch of the ACC that follows the Sub Antarctic Front (SAF). Before  entering the South Atlantic, the majority of theses particles turn northward east of DP and follow the SAF through the Brazil Malvinas Confluence, where the SAF meets the Sub Tropical Front. In or parallel to the South Atlantic Current, particles cross the basin and become part of the subtropical gyre to follow the Benguela Current northward. We further compare pathways, volume transports, transit times and thermohaline properties of particles entering through DP and leaking into the South Atlantic to those from particles not leaking into the South Atlantic. These analyses help exploring potential recipes for building a timeseries of “Drake Passage leakage”, complementary to the already established Agulhas Leakage timeseries.</p>


Ocean Science ◽  
2018 ◽  
Vol 14 (2) ◽  
pp. 273-283 ◽  
Author(s):  
Sudip Majumder ◽  
Claudia Schmid

Abstract. The Benguela Current forms the eastern limb of the subtropical gyre in the South Atlantic and transports a blend of relatively fresh and cool Atlantic water and relatively warm and salty Indian Ocean water northwestward. Therefore, it plays an important role not only for the local freshwater and heat budgets but for the overall meridional heat and freshwater transport in the South Atlantic. Historically, the Benguela Current region is relatively data sparse, especially with respect to long-term velocity observations. A new three-dimensional data set of the horizontal velocity in the upper 2000 m that covers the years 1993 to 2015 is used to analyze the variability in the Benguela Current. This data set was derived using observations from Argo floats, satellite sea surface height, and wind fields. Since Argo floats do not cover regions shallower than 1000 m, the data set has gaps inshore. The main features of the horizontal circulation observed in this data set are in good agreement with those from earlier studies based on limited observations. Therefore, it can be used for a more detailed study of the flow pattern as well as the variability in the circulation in this region. It is found that the mean meridional transport in the upper 800 m between the continental shelf of Africa and 3∘ E, decreases from 23 ± 3 Sv (1 Sv = 106 m3 s−1) at 31∘ S to 11 ± 3 Sv at 28∘ S. In terms of variability, the 23-year long time series at 30 and 35∘ S reveals phases with large energy densities at periods of 3 to 7 months, which can be attributed to the occurrence of Agulhas rings in this region. The prevalence of Agulhas rings is also behind the fact that the energy density at 35∘ S at the annual period is smaller than at 30∘ S because the former latitude is closer to Agulhas Retroflection and therefore more likely to be impacted by the Agulhas rings. In agreement with this, the energy density associated with mesoscale variability at 30∘ S is weaker than at 35∘ S. With respect to the forcing, the Sverdrup balance and the observed transport at 30∘ S exhibit a strong correlation of 0.7. No significant correlation between these parameters is found at 35∘ S.


Ocean Science ◽  
2010 ◽  
Vol 6 (4) ◽  
pp. 997-1011 ◽  
Author(s):  
V. Zharkov ◽  
D. Nof ◽  
W. Weijer

Abstract. The Agulhas leakage to the South Atlantic exhibits a strong anti-correlation with the mass flux of the Agulhas Current. When the Agulhas retroflection is in its normal position near Cape Agulhas, leakage is relatively high and the nearby South African coastal slant (angle of derivation from zonal) is very small and relatively invariant alongshore. During periods of strong incoming flux (low leakage), the retroflection shifts upstream to Port Elizabeth or East London, where the coastline shape has a "kink", i.e., the slant changes abruptly from small on the west side, to large (about 55°) on the east side. Here, we show that the variability of rings shedding and anti-correlation between Agulhas mass flux and leakage to the South Atlantic may be attributed to this kink. To do so, we develop a nonlinear analytical model for retroflection near a coastline that consists of two sections, a zonal western section and a strongly slanted eastern section. The principal difference between this and the model of a straight slanted coast (discussed in our earlier papers) is that, here, free purely westward propagation of eddies along the zonal coastline section is allowed. This introduces an interesting situation in which strong slant of the coast east of the kink prohibits the formation and shedding of rings, while the almost zonal coastal orientation west of the kink encourages shedding. Therefore, the kink "locks" the position of the retroflection, forcing it to occur just downstream of the kink. Rings are necessarily shed from the retroflection area in our kinked model, regardless of the degree of eastern coast slant. In contrast, a no-kink model with a coastline of intermediate slant indicates that shedding is almost completely arrested by that slant. We suggest that the observed difference in ring-shedding intensity during times of normal retroflection position and times when the retroflection is shifted eastward is due to the change in the retroflection location with respect to the kink. When the incoming flux detaches from the coast north of the kink, ring transport is small; when the flux detaches south of the kink, transport is large. Simple process-oriented numerical simulations are in fair agreement with our analytical results.


2020 ◽  
Vol 7 ◽  
Author(s):  
Caio Cesar-Ribeiro ◽  
Fernanda R. Piedras ◽  
Leticia C. da Cunha ◽  
Domênica T. de Lima ◽  
Luana Q. Pinho ◽  
...  

From the southwestern termination of the Agulhas current, anticyclonic eddies are emitted and drift across the South Atlantic Ocean. This study is based on a FORSA (Following Ocean Rings in the South Atlantic) oceanographic cruise, from Cape Town (South AFRica) to Arraial do Cabo (Brazil) in June 2015, during which three eddies of different ages (E1, 7 months; E3, 11 months; E5, 24 months) from the Agulhas current were sampled for microplankton identification and determination of functional traits. The stations where sampling occurred at each eddy included a control outside the eddy and three stations inside the eddy—border, midway (between the border and center), and center (identified through satellite images of sea level anomaly—SLA). Functional traits were determined based on microscopic observations and consultation of the literature. An evident decay in the Agulhas eddies toward the west was observed, and each eddy proved to be different. E1 represented a younger and more robust structure. At the same time, the other eddies, E3 and E5, were more alike with similar physical, chemical, and ecological characteristics and almost the same indices values of functional diversity, demonstrating that although their species compositions were different, the strategies used by the species were the same. The most crucial ecological trait for microplankton was nutrition mode. The microplankton contained mainly mixotrophic dinoflagellates and cyanobacteria adapted to oligotrophic conditions. The functional strategy of microplankton did not differ among the eddies and stations, with mixotrophy being the most striking trait. Therefore, the older eddies’ microplankton community fits the neutrality theory, whereby species perform similar ecological functions, and the younger eddy fits in the niche complementarity. Even with the species composition being different in each eddy and/or within the same eddy, the functional strategy was the same, with scarce resources and species selected that best use any source of nutrients or use evolutionary advantages to live in an oligotrophic environment.


2008 ◽  
Vol 5 (1) ◽  
pp. 39-75 ◽  
Author(s):  
V. Zharkov ◽  
D. Nof

Abstract. Recent proxies analysis suggest that, at the end of the last glacial, there was a significant increase in the injection of Agulhas rings into the South Atlantic (SA). This brought about a dramatic increase in the salt-influx (from the Indian Ocean) into the SA helping re-start the then-collapsed meridional overturning cell (MOC), leading to the termination of the Younger Dryas (YD). Here, we propose a mechanism through which large variations in ring production take place. Using nonlinear analytical solutions for eddy shedding we show that there are restricted possibilities for ring detachment when the coast is oriented in the north-south direction. We define a critical coastline angle below which there is rings shedding and above which there is almost no shedding. In the case of the Agulhas region, the particular shape of the African continent implies that rings can be produced only when the retroflection occurs beyond a specific latitude where the angle is critical. During glaciation, the wind stress curl (WSC) vanished at a latitude lower than that of the critical angle, which prohibited the retroflection from producing rings. When the latitude at which the WSC vanishes migrated poleward towards its present day position, the corresponding coastline angle decreased below the critical angle and allowed for a vigorous production of rings. Simple process-oriented numerical simulations (using the Bleck and Boudra model) are in very good agreement with our results and enable us to affirm that, during the glacials, the behavior of the Agulhas Current (AC) was similar to that of the modern East Australian Current (EAC), for which the coastline slant is supercritical.


2021 ◽  
Author(s):  
Christina Schmidt ◽  
Franziska U. Schwarzkopf ◽  
Siren Rühs ◽  
Arne Biastoch

Abstract. The inflow of relatively warm and salty water from the Indian Ocean into the South Atlantic via Agulhas leakage is important for the global overturning circulation and the global climate. In this study, we analyse the robustness of Agulhas leakage estimates as well as the thermohaline property modifications of Agulhas leakage south of Africa. Lagrangian experiments with both the newly developed tool Parcels and the well established tool Ariane were performed to simulate Agulhas leakage in the eddy-rich ocean-sea ice model INALT20 (1/20° horizontal resolution) forced by the JRA55-do atmospheric boundary conditions. The average transport, its variability, trend and the transit time from the Agulhas Current to the Cape Basin of Agulhas leakage is simulated comparably with both Lagrangian tools, emphasising the robustness of our method. Different designs of the Lagrangian experiment alter in particular the total transport of Agulhas leakage by up to 2 Sv, but the variability and trend of the transport is similar across these estimates. During the transit from the Agulhas Current at 32° S to the Cape Basin, a cooling and freshening of Agulhas leakage waters occurs especially at the location of the Agulhas Retroflection, resulting in a density increase as the thermal effect dominates. Beyond the strong air-sea exchange around South Africa, Agulhas leakage warms and salinifies the water masses below the thermocline in the South Atlantic.


2017 ◽  
Author(s):  
Sudip Majumder ◽  
Claudia Schmid

Abstract. The Benguela Current forms the eastern limb of the subtropical gyre in the South Atlantic and transports a blend of relatively fresh and cool Atlantic water as well as relatively warm and salty Indian Ocean water northward. Therefore, it plays an important role not only for the local freshwater and heat budgets but for the overall meridional heat and freshwater transports in the South Atlantic. Historically, the Benguela Current region is relatively data sparse, especially with respect to long-term observations. A new three dimensional data set of the horizontal velocity in the upper 2000 m that covers the years 1993 to 2015 is used to analyze the variability of the Benguela Current. This data set was derived using observations from Argo floats, satellite sea surface height and wind fields. The main features of the horizontal circulation observed in this data set are in good agreement with those from earlier observations based on more limited data sets. Therefore, it can be used for a more detailed study the flow pattern as well as the variability of the circulation in this region. It is found that the mean meridional transport in the upper 800 m between the continental shelf of Africa and 3° E, decreases from 23 ± 3 Sv at 31° S to 11 ± 3 Sv at 28° S. In terms of variability, the 23-year long timeseries at 30° S and 35° S reveal phases with large energy densities at periods of 3 to 7 months, which can be attributed to the occurrence of Agulhas rings in this region. The prevalence of these rings is also behind the fact that the energy density at 35° S at the annual period is smaller than at 30° S, because the former latitude is closer to Agulhas retroflection and therefore more likely to be impacted by the Agulhas rings. In agreement with this, the energy density associated with mesoscale variability at 30° S is weaker than at 35° S. With respect to the forcing, the significant correlation between the Sverdrup balance derived from the wind stress and the observed transports at 30° S is 0.7. No significant correlation between these parameters was found at 35° S.


Sign in / Sign up

Export Citation Format

Share Document