A three-dimensional displacement analysis from an image-plane hologram

1978 ◽  
Vol 18 (3) ◽  
pp. 101-106 ◽  
Author(s):  
Jerome P. Sikora
Author(s):  
John C. Russ

Three-dimensional (3D) images consisting of arrays of voxels can now be routinely obtained from several different types of microscopes. These include both the transmission and emission modes of the confocal scanning laser microscope (but not its most common reflection mode), the secondary ion mass spectrometer, and computed tomography using electrons, X-rays or other signals. Compared to the traditional use of serial sectioning (which includes sequential polishing of hard materials), these newer techniques eliminate difficulties of alignment of slices, and maintain uniform resolution in the depth direction. However, the resolution in the z-direction may be different from that within each image plane, which makes the voxels non-cubic and creates some difficulties for subsequent analysis.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Guoliang Xu ◽  
Xia Wang ◽  
Ming Li ◽  
Zhucui Jing

AbstractWe present an efficient and reliable algorithm for determining the orientations of noisy images obtained fromprojections of a three-dimensional object. Based on the linear relationship among the common line vectors in one image plane, we construct a sparse matrix, and show that the coordinates of the common line vectors are the eigenvectors of the matrix with respect to the eigenvalue 1. The projection directions and in-plane rotation angles can be determined fromthese coordinates. A robust computation method of common lines in the real space using aweighted cross-correlation function is proposed to increase the robustness of the algorithm against the noise. A small number of good leading images, which have the maximal dissimilarity, are used to increase the reliability of orientations and improve the efficiency for determining the orientations of all the images. Numerical experiments show that the proposed algorithm is effective and efficient.


2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881413 ◽  
Author(s):  
Xiangyang Xu ◽  
Hao Yang

The complexity of structural materials is increasing the importance of the technology for high accuracy measurement. How to obtain the displacement information of structural feature points accurately and efficiently is the key issue of deformation analysis. In this article, displacement analysis of a composite arched structure is investigated based on the terrestrial laser scanning technique. A new method based on the measured point cloud is proposed to analyze the displacement of surficial points, resulting in not only the displacement size but also the displacement direction. The innovation lies in extracting the displacement information with a network and remapped point cloud, which is called the network method. The displacement map obtained demonstrates that the transverse displacement in the experiment plays an important role in the safety of the structure, which could not be observed and obtained by the surface approximation method. Therefore, the panorama- and pointwise displacement analysis technologies contribute to ensure the safety of increasingly complex constructions.


2019 ◽  
Vol 28 (10) ◽  
pp. 1877-1885
Author(s):  
Jung-Han Kim ◽  
Heui-Chul Gwak ◽  
Chang-Wan Kim ◽  
Chang-Rack Lee ◽  
Young-Jun Kim ◽  
...  

Optik ◽  
2019 ◽  
Vol 185 ◽  
pp. 1157-1162 ◽  
Author(s):  
Fang-ke Zong ◽  
Jing-jin Zhang ◽  
Bao-ping Guo ◽  
Qin-lao Yang

2011 ◽  
Vol 48 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Ga Zhang ◽  
Jian-Min Zhang

As the key structure of a practical construction technique, the low-cement extruded curb has been widely used in recent concrete-faced rockfill dams (CFRDs). The extruded curb exhibits significant interactions with the neighboring gravels and with the face slab. These interactions were investigated using element tests, and a new model was proposed. This model is composed of three parts: (i) the equivalent slab that is described using an ideal elastoplasticity model, (ii) the equivalent interface between the curb and the gravel cushion layer that is described using an elastoplasticity damage model, and (iii) the interface between the curb and the face slab that is described using a modified ideal elastoplasticity model. This model was verified via a two-dimensional numerical simulation of an ideal CFRD to capture the main behavior of the extruded curb with interactions between the extruded curb and the neighboring soil – face slab, employing a significantly smaller number of elements and a shorter calculation than direct simulation. The model was used to perform a three-dimensional stress–displacement analysis of the Bakun CFRD (205 m in height), and the results showed that the extruded curb causes a change in the stress of the face slab.


Sign in / Sign up

Export Citation Format

Share Document