Nuclear behavior during branch formation in a centrifugedAdiantum protonema and the nuclear polarity

1995 ◽  
Vol 108 (4) ◽  
pp. 501-509 ◽  
Author(s):  
Masamitsu Wada
Author(s):  
Sumei Li ◽  
Jifeng Zhang ◽  
Jiaqi Zhang ◽  
Jiong Li ◽  
Longfei Cheng ◽  
...  

Aims: Our work aims to revealing the underlying microtubule mechanism of neurites outgrowth during neuronal development, and also proposes a feasible intervention pathway for reconstructing neural network connections after nerve injury. Background: Microtubule polymerization and severing are the basis for the neurite outgrowth and branch formation. Collapsin response mediator protein 2 (CRMP2) regulates axonal growth and branching as a binding partner of the tubulin heterodimer to promote microtubule assembly. And spastin participates in the growth and regeneration of neurites by severing microtubules into small segments. However, how CRMP2 and spastin cooperate to regulate neurite outgrowth by controlling the microtubule dynamics needs to be elucidated. Objective: To explore whether neurite outgrowth was mediated by coordination of CRMP2 and spastin. Method: Hippocampal neurons were cultured in vitro in 24-well culture plates for 4 days before being used to perform the transfection. Calcium phosphate was used to transfect the CRMP2 and spastin constructs and their control into the neurons. An interaction between CRMP2 and spastin was examined by using pull down, CoIP and immunofluorescence colocalization assays. And immunostaining was also performed to determine the morphology of neurites. Result: We first demonstrated that CRMP2 interacted with spastin to promote the neurite outgrowth and branch formation. Furthermore, our results identified that phosphorylation modification failed to alter the binding affinities of CRMP2 for spastin, but inhibited their binding to microtubules. CRMP2 interacted with the MTBD domain of spastin via its C-terminus, and blocking the binding sites of them inhibited the outgrowth and branch formation of neurites. In addition, we confirmed one phosphorylation site S210 at spastin in hippocampal neurons and phosphorylation spastin at site S210 promoted the neurite outgrowth but not branch formation by remodeling microtubules. Conclusion: Taken together, our data demonstrated that the interaction of CRMP2 and spastin is required for neurite outgrowth and branch formation and their interaction is not regulated by their phosphorylation.


1965 ◽  
Vol 43 (8) ◽  
pp. 933-938
Author(s):  
Mary B. Mitchell

Morphology of the ascus and of the ascus cluster, as observed in carmine-stained, squash preparations of the contents of immature fruit bodies, is described with the aid of photomicrographs. Complications which raise questions regarding the applicability of the currently accepted scheme of ascus development are discussed. The function of the crozier, the mechanism of spore formation, and the correlation of nuclear behavior with ascus growth appear to have been misunderstood. It is concluded that the initial stages of ascus development involve complexities, the resolution of which may reveal unknown aspects of the nuclear cycle.


2018 ◽  
Vol 115 (52) ◽  
pp. E12235-E12244 ◽  
Author(s):  
Lisa L. Hua ◽  
Takashi Mikawa

Pairing homologous chromosomes is required for recombination. However, in nonmeiotic stages it can lead to detrimental consequences, such as allelic misregulation and genome instability, and is rare in human somatic cells. How mitotic recombination is prevented—and how genetic stability is maintained across daughter cells—is a fundamental, unanswered question. Here, we report that both human and mouse cells impede homologous chromosome pairing by keeping two haploid chromosome sets apart throughout mitosis. Four-dimensional analysis of chromosomes during cell division revealed that a haploid chromosome set resides on either side of a meridional plane, crossing two centrosomes. Simultaneous tracking of chromosome oscillation and the spindle axis, using fluorescent CENP-A and centrin1, respectively, demonstrates collective genome behavior/segregation of two haploid sets throughout mitosis. Using 3D chromosome imaging of a translocation mouse with a supernumerary chromosome, we found that this maternally derived chromosome is positioned by parental origin. These data, taken together, support the identity of haploid sets by parental origin. This haploid set-based antipairing motif is shared by multiple cell types, doubles in tetraploid cells, and is lost in a carcinoma cell line. The data support a mechanism of nuclear polarity that sequesters two haploid sets along a subcellular axis. This topological segregation of haploid sets revisits an old model/paradigm and provides implications for maintaining mitotic fidelity.


2002 ◽  
Vol 124 (4) ◽  
pp. 680-688 ◽  
Author(s):  
M. C. Dubourg ◽  
V. Lamacq

Complex crack networks are initiated in rails under Rolling Contact Fatigue. This paper attempts to model the RCF crack propagation with a particular emphasis on the branching conditions and the parameters that play a role on them. The numerical tool proposed rests on the combination of the author’s RCF model, Hourlier and Pineau’s criterion for the branch prediction and experimental data and the corresponding models for fatigue crack extension that are derived from a Joint European project. Parametric studies on the influence of (i) residual stresses, (ii) both interfacial crack and wheel/rail contact frictional effects, (iii) neighboring crack are conducted to reach a better understanding of the RC crack propagation behavior and more particularly the branch conditions, i.e., the length of the primary crack prior to branch formation and the branch direction.


Author(s):  
Satish Bodakuntla ◽  
Hana Nedozralova ◽  
Nirakar Basnet ◽  
Naoko Mizuno

Axon branching is a critical process ensuring a high degree of interconnectivity for neural network formation. As branching occurs at sites distant from the soma, it is necessary that axons have a local system to dynamically control and regulate axonal growth. This machinery depends on the orchestration of cellular functions such as cytoskeleton, subcellular transport, energy production, protein- and membrane synthesis that are adapted for branch formation. Compared to the axon shaft, branching sites show a distinct and dynamic arrangement of cytoskeleton components, endoplasmic reticulum and mitochondria. This review discusses the regulation of axon branching in the context of cytoskeleton and membrane remodeling.


2018 ◽  
Vol 217 (10) ◽  
pp. 3325-3326
Author(s):  
Yun-Jin Pai ◽  
Adrian W. Moore

The mechanisms by which the actin cytoskeleton regulates dendritic branching are not fully understood. Nithianandam and Chien (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201711136) discover actin blobs, new structures that mediate dynamic actin delivery within a growing dendrite arbor and that mark sites of future branch formation.


Sign in / Sign up

Export Citation Format

Share Document