Estimation of reynolds shear stresses during pulsatile flow in the region of aortic valves

1985 ◽  
Vol 13 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Frederick J. Walburn ◽  
Hani N. Sabbah ◽  
Paul D. Stein
1990 ◽  
Vol 23 (12) ◽  
pp. 1231-1238 ◽  
Author(s):  
H Nygaard ◽  
M Giersiepen ◽  
J.M Hasenkam ◽  
D Westphal ◽  
P.K Paulsen ◽  
...  

2002 ◽  
Vol 124 (2) ◽  
pp. 155-165 ◽  
Author(s):  
Brandon R. Travis ◽  
Hwa L. Leo ◽  
Parina A. Shah ◽  
David H. Frakes ◽  
Ajit P. Yoganathan

In this work, estimates of turbulence were made from pulsatile flow laser Doppler velocimetry measurements using traditional phase averaging and averaging after the removal of cyclic variation. These estimates were compared with estimates obtained from steady leakage flow LDV measurements and an analytical method. The results of these studies indicate that leakage jets which are free and planar in shape may be more unstable than other leakage jets, and that cyclic variation does not cause a gross overestimation of the Reynolds stresses at large distances from the leakage jet orifice.


1986 ◽  
Vol 108 (1) ◽  
pp. 59-64 ◽  
Author(s):  
W. G. Tiederman ◽  
M. J. Steinle ◽  
W. M. Phillips

Elevated turbulent shear stresses resulting from disturbed blood flow through prosthetic heart valves can cause damage to red blood cells and platelets. The purpose of this study was to measure the turbulent shear stresses occurring downstream of aortic prosthetic valves during in-vitro pulsatile flow. By matching the indices of refraction of the blood analog fluid and model aorta, correlated, simultaneous two-component laser velocimeter measurements of the axial and radial velocity components were made immediately downstream of two aortic prosthetic valves. Velocity data were ensemble averaged over 200 or more cycles for a 15-ms window opened at peak systolic flow. The systolic duration for cardiac flows of 8.4 L/min was 200 ms. Ensemble-averaged total shear stress levels of 2820 dynes/cm2 and 2070 dynes/cm2 were found downstream of a trileaflet valve and a tilting disk valve, respectively. These shear stress levels decreased with axial distance downstream much faster for the tilting disk valve than for the trileaflet valve.


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
N. K. C. Selvarasu ◽  
Danesh K. Tafti

Cardiovascular diseases are the number one cause of death in the world, making the understanding of hemodynamics and the development of treatment options imperative. The effect of motion of the coronary artery due to the motion of the myocardium is not extensively studied. In this work, we focus our investigation on the localized hemodynamic effects of dynamic changes in curvature and torsion. It is our objective to understand and reveal the mechanism by which changes in curvature and torsion contribute towards the observed wall shear stress distribution. Such adverse hemodynamic conditions could have an effect on circumferential intimal thickening. Three-dimensional spatiotemporally resolved computational fluid dynamics (CFD) simulations of pulsatile flow with moving wall boundaries were carried out for a simplified coronary artery with physiologically relevant flow parameters. A model with stationary walls is used as the baseline control case. In order to study the effect of curvature and torsion variation on local hemodynamics, this baseline model is compared to models where the curvature, torsion, and both curvature and torsion change. The simulations provided detailed information regarding the secondary flow dynamics. The results suggest that changes in curvature and torsion cause critical changes in local hemodynamics, namely, altering the local pressure and velocity gradients and secondary flow patterns. The wall shear stress (WSS) varies by a maximum of 22% when the curvature changes, by 3% when the torsion changes, and by 26% when both the curvature and torsion change. The oscillatory shear stress (OSI) varies by a maximum of 24% when the curvature changes, by 4% when the torsion changes, and by 28% when both the curvature and torsion change. We demonstrate that these changes are attributed to the physical mechanism associating the secondary flow patterns to the production of vorticity (vorticity flux) due to the wall movement. The secondary flow patterns and augmented vorticity flux affect the wall shear stresses. As a result, this work reveals how changes in curvature and torsion act to modify the near wall hemodynamics of arteries.


1991 ◽  
Vol 113 (2) ◽  
pp. 123-131 ◽  
Author(s):  
G. Helmlinger ◽  
R. V. Geiger ◽  
S. Schreck ◽  
R. M. Nerem

Endothelial cells (EC) appear to adapt their morphology and function to the in vivo hemodynamic environment in which they reside. In vitro experiments indicate that similar alterations occur for cultured EC exposed to a laminar steady-state flow-induced shear stress. However, in vivo EC are exposed to a pulsatile flow environment; thus, in this investigation, the influence of pulsatile flow on cell shape and orientation and on actin microfilament localization in confluent bovine aortic endothelial cell (BAEC) monolayers was studied using a 1-Hz nonreversing sinusoidal shear stress of 40 ± 20 dynes/cm2 (type I), 1-Hz reversing sinusoidal shear stresses of 20 ± 40 and 10 ± 15 dynes/cm2 (type II), and 1-Hz oscillatory shear stresses of 0 ± 20 and 0 ± 40 dynes/cm2 (type III). The results show that in a type I nonreversing flow, cell shape changed less rapidly, but cells took on a more elongated shape than their steady flow controls long-term. For low-amplitude type II reversing flow, BAECs changed less rapidly in shape and were always less elongated than their steady controls; however, for high amplitude reversal, BAECs did not stay attached for more than 24 hours. For type III oscillatory flows, BAEC cell shape remained polygonal as in static culture and did not exhibit actin stress fibers, such as occurred in all other flows. These results demonstrate that EC can discriminate between different types of pulsatile flow environments. Furthermore, these experiments indicate the importance of engineering the cell culture environment so as to include pulsatile flow in investigations of vascular endothelial cell biology, whether these studies are designed to study vascular biology and the role of the endothelial cell in disease processes, or are ones leading to the development of hybrid, endothelial cell-preseeded vascular grafts.


1988 ◽  
Vol 21 (8) ◽  
pp. 631-645 ◽  
Author(s):  
J.M. Hasenkam ◽  
H. Nygaard ◽  
M. Giersiepen ◽  
H. Reul ◽  
H. Stødkilde-Jørgensen

Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 287
Author(s):  
Huseyin Enes Salman ◽  
Levent Saltik ◽  
Huseyin C. Yalcin

Calcification and bicuspid valve formation are important aortic valve disorders that disturb the hemodynamics and the valve function. The detailed analysis of aortic valve hemodynamics would lead to a better understanding of the disease’s etiology. We computationally modeled the aortic valve using simplified three-dimensional geometry and inlet velocity conditions obtained via echocardiography. We examined various calcification severities and bicuspid valve formation. Fluid-structure interaction (FSI) analyses were adapted using ANSYS Workbench to incorporate both flow dynamics and leaflet deformation accurately. Simulation results were validated by comparing leaflet movements in B-mode echo recordings. Results indicate that the biomechanical environment is significantly changed for calcified and bicuspid valves. High flow jet velocities are observed in the calcified valves which results in high transvalvular pressure difference (TPG). Wall shear stresses (WSS) increased with the calcification on both fibrosa (aorta side) and ventricularis (left ventricle side) surfaces of the leaflet. The WSS distribution is regular on the ventricularis, as the WSS values proportionally increase from the base to the tip of the leaflet. However, WSS patterns are spatially complex on the fibrosa side. Low WSS levels and spatially complex WSS patterns on the fibrosa side are considered as promoting factors for further calcification and valvular diseases.


Sign in / Sign up

Export Citation Format

Share Document