Determination of time-constants in cables of finite length

1992 ◽  
Vol 54 (4) ◽  
pp. 673-686 ◽  
Author(s):  
Michael A. B. Deakin ◽  
Robert A. R. Bywater ◽  
S. J. Redman
Keyword(s):  
1992 ◽  
Vol 54 (4) ◽  
pp. 673-686
Author(s):  
M DEAKIN ◽  
R BYWATER ◽  
S REDMAN
Keyword(s):  

1960 ◽  
Vol 27 (4) ◽  
pp. 617-622 ◽  
Author(s):  
W. H. Chu ◽  
H. N. Abramson

This paper presents a theoretical solution for transient heat conduction in a rod of finite length with variable thermal properties. A numerical procedure is developed and the results of one example are presented and compared with the corresponding solution for the case of constant properties. Application to the problem of determination of thermophysical properties is discussed briefly.


2020 ◽  
Vol 24 (3) ◽  
pp. 1447-1465 ◽  
Author(s):  
Johannes Riegger

Abstract. The knowledge of water storage volumes in catchments and in river networks leading to river discharge is essential for the description of river ecology, the prediction of floods and specifically for a sustainable management of water resources in the context of climate change. Measurements of mass variations by the GRACE gravity satellite or by ground-based observations of river or groundwater level variations do not permit the determination of the respective storage volumes, which could be considerably bigger than the mass variations themselves. For fully humid tropical conditions like the Amazon the relationship between GRACE and river discharge is linear with a phase shift. This permits the hydraulic time constant to be determined and thus the total drainable storage directly from observed runoff can be quantified, if the phase shift can be interpreted as the river time lag. As a time lag can be described by a storage cascade, a lumped conceptual model with cascaded storages for the catchment and river network is set up here with individual hydraulic time constants and mathematically solved by piecewise analytical solutions. Tests of the scheme with synthetic recharge time series show that a parameter optimization either versus mass anomalies or runoff reproduces the time constants for both the catchment and the river network τC and τR in a unique way, and this then permits an individual quantification of the respective storage volumes. The application to the full Amazon basin leads to a very good fitting performance for total mass, river runoff and their phasing (Nash–Sutcliffe for signals 0.96, for monthly residuals 0.72). The calculated river network mass highly correlates (0.96 for signals, 0.76 for monthly residuals) with the observed flood area from GIEMS and corresponds to observed flood volumes. The fitting performance versus GRACE permits river runoff and drainable storage volumes to be determined from recharge and GRACE exclusively, i.e. even for ungauged catchments. An adjustment of the hydraulic time constants (τC, τR) on a training period facilitates a simple determination of drainable storage volumes for other times directly from measured river discharge and/or GRACE and thus a closure of data gaps without the necessity of further model runs.


1986 ◽  
Vol 19 (3-4) ◽  
pp. 235-247 ◽  
Author(s):  
M.E. Jones ◽  
T.E. Nicholas ◽  
J.H.T. Power ◽  
H.A. Barr

2005 ◽  
Vol 12 (6) ◽  
pp. 767-774 ◽  
Author(s):  
S. C. Chapman ◽  
B. Hnat ◽  
G. Rowlands ◽  
N. W. Watkins

Abstract. Empirical determination of the scaling properties and exponents of time series presents a formidable challenge in testing, and developing, a theoretical understanding of turbulence and other out-of-equilibrium phenomena. We discuss the special case of self affine time series in the context of a stochastic process. We highlight two complementary approaches to the differenced variable of the data: i) attempting a scaling collapse of the Probability Density Functions which should then be well described by the solution of the corresponding Fokker-Planck equation and ii) using structure functions to determine the scaling properties of the higher order moments. We consider a method of conditioning that recovers the underlying self affine scaling in a finite length time series, and illustrate it using a Lévy flight.


Sign in / Sign up

Export Citation Format

Share Document