Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete

2000 ◽  
Vol 14 (5) ◽  
pp. 261-266 ◽  
Author(s):  
Sammy Yin Nin Chan ◽  
Xin Luo ◽  
Wei Sun
2013 ◽  
Vol 368-370 ◽  
pp. 1052-1055
Author(s):  
Seung Jo Lee ◽  
Jung Min Park

The aim of the study is to improve the understanding of the influence of reinforcing fiber types on the mechanical properties of high performance concretes (HPC) subjected to high temperature. The mechanical properties measured include residual compressive strength, weight reduction ratio, outward appearance property, and failure mode. Nylon, polypropylene, and steel fiber were added to enhance mechanical property of the concretes. After exposure to high temperatures ranged from 100 to 800°C, mechanical properties of fiber-toughened HPC were investigated. For HPC, although residual compressive strength was decreased by exposure to high temperature over 500°C, weight reduction ratio was significantly higher than that before heating temperature.


2021 ◽  
pp. 224-231
Author(s):  
Huijie Shang, Qianqian Peng

In this paper, the effects of fiber on the residual strength and high temperature burst performance of ultra-high performance concrete are studied. This paper analyzes the performance change law of concrete after high temperature from three aspects: mass loss, ultrasonic wave velocity and compressive strength. The results show that with the increase of heating temperature, the mass loss increases and the ultrasonic wave velocity decreases. The compressive strength of concrete increases gradually before 300 ℃ and decreases gradually after 400 ℃. Mixing PVA fiber and steel fiber can not only improve the burst resistance of ultra-high performance concrete at high temperature, but also have high residual strength. This paper discusses the high temperature burst mechanism of ultra-high performance concrete, which is caused by the change of steam pressure and microstructure.


2011 ◽  
Vol 250-253 ◽  
pp. 686-689 ◽  
Author(s):  
Shu Hua Liu ◽  
Zhi Yang Gao ◽  
Mei Juan Rao

A new kind of ultra high performance concrete containing limestone powder was studied in this paper. The results show that the compressive strength of the ultra high performance concrete containing limestone powder is higher than 120MPa; the hydration activity and the accelerating effect of limestone powder are obvious under the condition of high temperature. The limestone powder hydrated and formed calcium monocaboaluminate hydrates. The cost would be reduced when adding certain amount of limestone powder when confect ultra high performance concrete. It is economical and feasible.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4095
Author(s):  
Qing Chen ◽  
Zhiyuan Zhu ◽  
Rui Ma ◽  
Zhengwu Jiang ◽  
Yao Zhang ◽  
...  

In this paper, the mechanical performance of an ultra-high-performance concrete (UHPC) repaired cementitious composite system, including the old matrix and the new reinforcement (UHPC), under various high temperature levels (20 °C, 100 °C, 300 °C, and 500 °C) was studied. In this system, UHPC reinforced with different contents of steel fibers and polypropylene (PP) fibers was utilized. Moreover, the physical, compressive, bonding, and flexural behaviors of the UHPC repaired system after being exposed to different high temperatures were investigated. Meanwhile, X-ray diffraction (XRD), baseline evaluation test (BET), and scanning electron microscope (SEM) tests were conducted to analyze the effect of high temperature on the microstructural changes in a UHPC repaired cementitious composite system. Results indicate that the appearance of the bonded system changed, and its mass decreased slightly. The average percentage of residual mass of the system was 99.5%, 96%, and 94–95% at 100 °C, 300 °C, and 500 °C, respectively. The residual compressive strength, bonding strength, and flexural performance improved first and then deteriorated with the increase of temperature. When the temperature reached 500 °C, the compressive strength, bonding strength, and flexural strength decreased by about 20%, 30%, and 15% for the UHPC bonded system, respectively. Under high temperature, the original components of UHPC decreased and the pore structure deteriorated. The cumulative pore volume at 500 °C could reach more than three times that at room temperature (about 20 °C). The bonding showed obvious deterioration, and the interfacial structure became looser after exposure to high temperature.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Wang ◽  
Shuo Liu ◽  
Qizhi Wang ◽  
Wei Yuan ◽  
Mingzhang Chen ◽  
...  

Based on forced vibration tests for high-performance concrete (HPC), the influence of bridge vibration induced by traveling vehicle on compressive strength and durability of HPC has been studied. It is concluded that 1 d and 2 d compressive strength of HPC decreased significantly, and the maximum reduction rate is 9.1%, while 28 d compressive strength of HPC had a slight lower with a 3% maximal drop under the action of two simple harmonic vibrations with 2 Hz, 3 mm amplitude, and 4 Hz, 3 mm amplitude. Moreover, the vibration had a slight effect on the compressive strength of HPC when the simple harmonic vibration had 4 Hz and 1 mm amplitude; it is indicated that the amplitude exerts a more prominent influence on the earlier compressive strength with the comparison of the frequency. In addition, the impact of simple harmonic vibration on durability of HPC can be ignored; this shows the self-healing function of concrete resulting from later hydration reaction. Thus, the research achievements mentioned above can contribute to learning the laws by which bridge vibration affects the properties of concrete and provide technical support for the design and construction of the bridge deck pavement maintenance.


Sign in / Sign up

Export Citation Format

Share Document