A combined model of ultrasound velocity and BMD improves cancellous bone strength prediction in vitro

1996 ◽  
Vol 6 (S1) ◽  
pp. 196-196 ◽  
Author(s):  
C. F. Njeh ◽  
C. W. Kuo ◽  
C. M. Boivin ◽  
C. M. Langton
1998 ◽  
Vol 31 ◽  
pp. 61
Author(s):  
K. Bruyere ◽  
F. Morestin ◽  
M. Brunet ◽  
D. Mitton ◽  
C. Rumelhart

1997 ◽  
Vol 7 (5) ◽  
pp. 471-477 ◽  
Author(s):  
C.F. Njeh ◽  
C.W. Kuo ◽  
C.M. Langton ◽  
H.I. Atrah ◽  
C.M. Boivin

Bone ◽  
1997 ◽  
Vol 21 (2) ◽  
pp. 183-190 ◽  
Author(s):  
R. Hodgskinson ◽  
C.F. Njeh ◽  
J.D. Currey ◽  
C.M. Langton

2021 ◽  
Vol 22 (3) ◽  
pp. 1169
Author(s):  
Yuhan Chang ◽  
Chih-Chien Hu ◽  
Ying-Yu Wu ◽  
Steve W. N. Ueng ◽  
Chih-Hsiang Chang ◽  
...  

Bacterial infection in orthopedic surgery is challenging because cell wall components released after bactericidal treatment can alter osteoblast and osteoclast activity and impair fracture stability. However, the precise effects and mechanisms whereby cell wall components impair bone healing are unclear. In this study, we characterized the effects of lipopolysaccharide (LPS) on bone healing and osteoclast and osteoblast activity in vitro and in vivo and evaluated the effects of ibudilast, an antagonist of toll-like receptor 4 (TLR4), on LPS-induced changes. In particular, micro-computed tomography was used to reconstruct femoral morphology and analyze callus bone content in a femoral defect mouse model. In the sham-treated group, significant bone bridge and cancellous bone formation were observed after surgery, however, LPS treatment delayed bone bridge and cancellous bone formation. LPS inhibited osteogenic factor-induced MC3T3-E1 cell differentiation, alkaline phosphatase (ALP) levels, calcium deposition, and osteopontin secretion and increased the activity of osteoclast-associated molecules, including cathepsin K and tartrate-resistant acid phosphatase in vitro. Finally, ibudilast blocked the LPS-induced inhibition of osteoblast activation and activation of osteoclast in vitro and attenuated LPS-induced delayed callus bone formation in vivo. Our results provide a basis for the development of a novel strategy for the treatment of bone infection.


Author(s):  
C. Fölsch ◽  
P. Sahm ◽  
C. A. Fonseca Ulloa ◽  
G. A. Krombach ◽  
M. Kampschulte ◽  
...  

AbstractAntibiotic carrier particles of variable size might influence mechanic properties within impacted thermodisinfected and native cancellous bone different. Herafill®G containing calciumsulfate and calciumcarbonate provides high local concentrations of gentamicin being important for revision surgery in infected joint replacements. Native and thermodisinfected cancellous bone derived from 6 to 7 months old piglets was used for in vitro impaction bone grafting and supplemented each with Herafill®G granules of two different sizes. Micromovement of implants related to shear force was measured in 29 specimens distributed in 6 groups. Thermodisinfected cancellous bone revealed a significant higher shear force resistance than native bone with a mean difference of 423.8 mdeg/Nm (p < 0.001) ranging within 95% confidence interval from 181.5 to 666.0 mdeg/Nm. Adding small granules to thermodisinfected bone did not reduce shear force resistance significantly since adding large granules to native bone improved it by 344.0 mdeg/Nm (p < 0.003). Shear force resistance was found higher at the distal region of the implant compared to a proximal point of measurement throughout all specimens. Less impaction impulses were necessary for thermodisinfected bone. Thermodisinfected cancellous bone might achieve a higher degree of impaction compared with native bone resulting in increased resistance against shear force since impaction was found increased distally. Supplementation of thermodisinfected bone with small granules of Herafill®G might be considered for application of local antibiotics. Large granules appeared more beneficial for supplementation of native bone. Heterogeneity of bone graft and technical aspects of the impaction procedure have to be considered regarding the reproducibility of femoral impaction bone grafting.


2019 ◽  
Vol 45 (4) ◽  
pp. 259-266
Author(s):  
Claudio Stacchi ◽  
Matteo De Biasi ◽  
Lucio Torelli ◽  
Massimo Robiony ◽  
Roberto Di Lenarda ◽  
...  

The primary objective of the present in vitro study was to evaluate the influence of implant site preparation technique (drills vs ultrasonic instrumentation) on the primary stability of short dental implants with two different designs inserted in simulated low-quality cancellous bone. Eighty implant sites were prepared in custom-made solid rigid polyurethane blocks with two different low cancellous bone densities (5 or 15 pounds per cubic foot [PCF]), equally distributed between piezoelectric (Surgysonic Moto, Esacrom, Italy) and conventional drilling techniques. Two short implant systems (Prama and Syra, Sweden & Martina) were tested by inserting 40 fixtures of each system (both 6.0 mm length and 5.0 mm diameter), divided in the four subgroups (drills/5 PCF density; drills/15 PCF density; piezo/5 PCF density; piezo/15 PCF density). Insertion torque (Ncm), implant stability quotient values, removal torque (Ncm), and surgical time were recorded. Data were analyzed by 3-way ANOVA and Scheffé's test (α = 0.05). With slight variations among the considered dependent variables, overall high primary implant stability was observed across all subgroups. Piezoelectric instrumentation allowed for comparable or slightly superior primary stability in comparison with the drilling procedures in both implant systems. The Prama implants group showed the highest mean reverse torque and Syra implants the highest implant stability quotient values. Piezoelectric implant site preparation took prolonged operative time compared to conventional preparation with drills; among the drilling procedures, Syra system required fewer surgical steps and shorter operative time.


2010 ◽  
Vol 128 (5) ◽  
pp. 3181-3189 ◽  
Author(s):  
Katsunori Mizuno ◽  
Hiroki Somiya ◽  
Tomohiro Kubo ◽  
Mami Matsukawa ◽  
Takahiko Otani ◽  
...  

Endocrinology ◽  
2003 ◽  
Vol 144 (5) ◽  
pp. 2132-2140 ◽  
Author(s):  
Keiichiro Kitahara ◽  
Muneaki Ishijima ◽  
Susan R. Rittling ◽  
Kunikazu Tsuji ◽  
Hisashi Kurosawa ◽  
...  

Intermittent PTH treatment increases cancellous bone mass in osteoporosis patients; however, it reveals diverse effects on cortical bone mass. Underlying molecular mechanisms for anabolic PTH actions are largely unknown. Because PTH regulates expression of osteopontin (OPN) in osteoblasts, OPN could be one of the targets of PTH in bone. Therefore, we examined the role of OPN in the PTH actions in bone. Intermittent PTH treatment neither altered whole long-bone bone mineral density nor changed cortical bone mass in wild-type 129 mice, although it enhanced cancellous bone volume as reported previously. In contrast, OPN deficiency induced PTH enhancement of whole-bone bone mineral density as well as cortical bone mass. Strikingly, although PTH suppressed periosteal bone formation rate (BFR) and mineral apposition rate (MAR) in cortical bone in wild type, OPN deficiency induced PTH activation of periosteal BFR and MAR. In cancellous bone, OPN deficiency further enhanced PTH increase in BFR and MAR. Analysis on the cellular bases for these phenomena indicated that OPN deficiency augmented PTH enhancement in the increase in mineralized nodule formation in vitro. OPN deficiency did not alter the levels of PTH enhancement of the excretion of deoxypyridinoline in urine, the osteoclast number in vivo, and tartrate-resistant acid phosphatase-positive cell development in vitro. These observations indicated that OPN deficiency specifically induces PTH activation of periosteal bone formation in the cortical bone envelope.


Sign in / Sign up

Export Citation Format

Share Document