Low-frequency (1.7–6.7 mHz) geomagnetic-field fluctuations at high southern latitudes

1996 ◽  
Vol 19 (4) ◽  
pp. 517-525 ◽  
Author(s):  
P. Ballatore ◽  
S. Lepidi ◽  
L. Cafarella ◽  
U. Villante ◽  
A. Meloni ◽  
...  
1999 ◽  
Vol 104 (A1) ◽  
pp. 305-310 ◽  
Author(s):  
S. Lepidi ◽  
P. Francia ◽  
U. Villante ◽  
L. J. Lanzerotti ◽  
A. Meloni

1997 ◽  
Vol 15 (6) ◽  
pp. 656-661
Author(s):  
U. Villante ◽  
P. Francia

Abstract. The passage of a higher pressure solar wind region at the Earth's orbit marked the onset of low latitude (L=1.6) fluctuations in the frequency range (0.8–5.5 mHz) for both the horizontal geomagnetic field components. Spectral peaks mostly occur at the same frequencies as the spectral enhancements which appeared in the long term analysis of experimental measurements from the same station and were tentatively interpreted in terms of ground signatures of global magnetospheric modes. A comparison with simultaneous observations discussed by previous investigations allows us to conclude that the same set of frequencies is enhanced in a wide portion of the Earth's magnetosphere.


2006 ◽  
Vol 24 (5) ◽  
pp. 1455-1468 ◽  
Author(s):  
U. Villante ◽  
M. Vellante ◽  
P. Francia ◽  
M. De Lauretis ◽  
A. Meloni ◽  
...  

Abstract. We present an analysis of ULF geomagnetic field fluctuations at low latitudes during the first CAWSES campaign (29 March-3 April 2004). During the whole campaign, mainly in the prenoon sector, a moderate Pc3-4 pulsation activity is observed, clearly related to interplanetary upstream waves. On 3 April, in correspondence to the Earth's arrival of a coronal mass ejection, two SIs are observed whose waveforms are indicative of a contribution of the high-latitude ionospheric currents to the low-latitude ground field. During the following geomagnetic storm, low frequency (Pc5) waves are observed at discrete frequencies. Their correspondence with the same frequencies detected in the radial components of the interplanetary magnetic field and solar wind speed suggests that Alfvénic solar wind fluctuations may act as direct drivers of magnetospheric fluctuations. A cross-phase analysis, using different pairs of stations, is also presented for identifying field line resonant frequencies and monitoring changes in plasmaspheric mass density. Lastly, an analysis of ionospheric vertical soundings, measured at the Rome ionosonde station (41.8° N, 12.5° E), and vertical TEC measurements deduced from GPS signals within an European network shows the relation between the ULF resonances in the inner magnetosphere and thermal plasma density variations during geomagnetically quiet conditions, in contrast to various storm phases at the end of the CAWSES campaign.


2012 ◽  
Vol 1 (2) ◽  
pp. 85-101 ◽  
Author(s):  
E. Kozlovskaya ◽  
A. Kozlovsky

Abstract. Seismic broadband sensors with electromagnetic feedback are sensitive to variations of surrounding magnetic field, including variations of geomagnetic field. Usually, the influence of the geomagnetic field on recordings of such seismometers is ignored. It might be justified for seismic observations at middle and low latitudes. The problem is of high importance, however, for observations in Polar Regions (above 60° geomagnetic latitude), where magnitudes of natural magnetic disturbances may be two or even three orders larger. In our study we investigate the effect of ultra-low frequency (ULF) magnetic disturbances, known as geomagnetic pulsations, on the STS-2 seismic broadband sensors. The pulsations have their sources and, respectively, maximal amplitudes in the region of the auroral ovals, which surround the magnetic poles in both hemispheres at geomagnetic latitude (GMLAT) between 60° and 80°. To investigate sensitivity of the STS-2 seismometer to geomagnetic pulsations, we compared the recordings of permanent seismic stations in northern Finland to the data of the magnetometers of the IMAGE network located in the same area. Our results show that temporary variations of magnetic field with periods of 40–150 s corresponding to regular Pc4 and irregular Pi2 pulsations are seen very well in recordings of the STS-2 seismometers. Therefore, these pulsations may create a serious problem for interpretation of seismic observations in the vicinity of the auroral oval. Moreover, the shape of Pi2 magnetic disturbances and their periods resemble the waveforms of glacial seismic events reported originally by Ekström (2003). The problem may be treated, however, if combined analysis of recordings of co-located seismic and magnetic instruments is used.


2021 ◽  
Vol 331 ◽  
pp. 07012
Author(s):  
Cipta Ramadhani ◽  
Bulkis Kanata ◽  
Abdullah Zainuddin ◽  
Rosmaliati ◽  
Teti Zubaidah

In this study, we performed research on electromagnetic anomalies related to earthquakes as early signs (precursors) that occurred in Fukushima, Japan on February 13th, 2021. The research focused on the utilization of geomagnetic field data which was derived from the Kakioka (KAK), Kanoya (KNY), and Memambetsu (MMB) observatories, particularly in the ultra-low frequency (ULF) to detect earthquake precursors. The method of electromagnetic data processing was conducted by applying a polarization ratio. In addition, we improved the methodology by splitting the ULF data (which ranged from 0.01-0.1 Hz) into 9 central frequencies and picking up the highest value from each central frequency to get the polarization ratio. The anomaly of magnetic polarization was identified 2-3 weeks before the mainshock in a narrowband frequency in the range of 0.04-0.05 Hz.


2021 ◽  
Author(s):  
Takuro Toda ◽  
Mikako Ito ◽  
Jun-ichi Takeda ◽  
Alkio Masuda ◽  
Nobutaka Hattori ◽  
...  

Abstract Humans are frequently exposed to time-varying and static weak magnetic fields (WMF). However, the effects of faint magnetic fields, weaker than the geomagnetic field, have not been reported. We found that extremely low-frequency (ELF)-WMF, comprised of serial pulses of 10 µT intensity at 1–8 Hz, which was three or more times weaker than the geomagnetic field, reduced mitochondrial mass to 70% and the mitochondrial electron transport chain (ETC) complex II activity to 88%. Chemical inhibition of electron flux through the mitochondrial ETC complex II nullified the effect of ELF-WMF. Suppression of ETC complex II subsequently induced mitophagy by translocating parkin and PINK1 to the mitochondria and by recruiting LC3-II. Thereafter, mitophagy induced PGC-1α-mediated mitochondrial biogenesis to rejuvenate mitochondria. The lack of PINK1 negated the effect of ELF-WMF. Thus, ELF-WMF may be applicable for the treatment of human diseases that exhibit compromised mitochondrial homeostasis, such as Parkinson’s disease.


2009 ◽  
Vol 9 (5) ◽  
pp. 1567-1572 ◽  
Author(s):  
F. Masci ◽  
P. Palangio ◽  
M. Di Persio

Abstract. During the last twenty years a time-synchronized network of magnetometers has operated in Central Italy along the Apennine chain to monitor the magnetic field anomalies eventually related to the tectonic activity. At present time the network consists of five stations. In the past only few anomalies in the local geomagnetic field, possibly associated to earthquakes, has been observed, not least because the network area has shown a low-moderate seismic activity with the epicentres of the few events with Ml≥5 located away from the network station. During 2007 two Ml≈4 earthquakes occurred in proximity of two stations of the network. Here we report the magnetic anomalies in the geomagnetic field that could be related with these tectonic events. To better investigate these two events a study of ULF (ultra-low-frequency) emissions has been carried out on the geomagnetic field components H, D, and Z measured in L'Aquila Observatory during the period from January 2006 to December 2008. We want to stress that this paper refers to the period before the 2009 L'Aquila seismic sequence which main shock (Ml=5.8) of 6 April heavily damaged the medieval centre of the city and surroundings. At present time the analysis of the 2009 data is in progress.


Sign in / Sign up

Export Citation Format

Share Document