Nitrogenous derivatives of cyclic fatty acids

1962 ◽  
Vol 39 (10) ◽  
pp. 421-424 ◽  
Author(s):  
W. J. DeJarlais ◽  
H. M. Teeter
2008 ◽  
Vol 59 (3) ◽  
pp. 273-276 ◽  
Author(s):  
Raluca Stan ◽  
Nicoleta Chira ◽  
Cristina Ott ◽  
Cristina Todasca ◽  
Emile Perez

Several catanionic organogelators derived from 1,3 :2,4-bis-O-(p-aminobenzylidene)-D-sorbitol (p-NH2-DBS) and hydroxy derivatives of natural fatty acids were synthesized, characterized and their gelation ability was evaluated. SEM observations of the xerogels formed by association of 1,3 :2,4-bis-O-(p-aminobenzylidene)-D-sorbitol and 12-hydroxystearic acid showed important modifications in the morphology and depend upon the nature of solvent as compared with the xerogels formed by each individual organogelator.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1219
Author(s):  
Marek Bunse ◽  
Peter Lorenz ◽  
Florian C. Stintzing ◽  
Dietmar R. Kammerer

The present study aimed at the identification and quantitation of phenolic compounds, fatty acids, and further characteristic substances in the seeds of Geum urbanum L. and Geum rivale L. For this purpose, individual components of extracts recovered with MeOH, CH2Cl2, and by cold-pressing, respectively, were characterized by HPLC-DAD/ESI-MSn and GC/MS and compared with reference compounds. For both Geum species, phenolic compounds, such as flavonoids and gallic acid derivatives, and triterpenes, such as saponins and their aglycones, were detected. Surprisingly, both Geum species revealed the presence of derivatives of the triterpenoid aglycons asiatic acid and madecassic acid, which were characterized for the first time in the genus Geum. Furthermore, the fatty acids of both species were characterized by GC–MS after derivatization. Both species showed a promising fatty-acid profile in terms of nutritional properties because of high proportions of unsaturated fatty acids. Linoleic acid and linolenic acid were most abundant, among other compounds such as palmitic acid and stearic acid. In summary, the present study demonstrates the seeds of G. urbanum and G. rivale to be a valuable source of unsaturated fatty acids and bioactive phenolics, which might be exploited for nutritional and cosmetic products and for phytotherapeutic purposes.


1993 ◽  
Vol 265 (2) ◽  
pp. R414-R419 ◽  
Author(s):  
T. Xia ◽  
N. Mostafa ◽  
B. G. Bhat ◽  
G. L. Florant ◽  
R. A. Coleman

In the suckling rat, chick embryo, and hibernating marmot, fatty acids provide the major source of energy, and despite the high rate of hepatic beta-oxidation, these animals selectively retain long-chain polyunsaturated derivatives of C18:2n-6 and C18:3n-3. To determine whether the hepatic microsomal activity monoacylglycerol acyltransferase (MGAT) (EC 2.3.1.22) could provide a mechanism to selectively acylate monoacylglycerols that contain essential fatty acids, we tested the ability of MGAT activity from each of the three species to acylate sn-2-monoC18:1-, sn-2-monoC18:2-, sn-2-monoC18:3-, and sn-2-monoC20:4-glycerols. Hepatic MGAT activity acylated sn-2-monoC18:3-glycerol and sn-2-monoC18:2-glycerol in preference to sn-2-monoC18:1-glycerol in each of the three different lipolytic animals. MGAT's acyl group specificity could not be explained by invoking differences in membrane fluidity because the apparent affinity for sn-2-monoC20:4-glycerol was not increased. Further, sn-2-monoC18:3-glycerol remained a preferred substrate under assay conditions when both the C18:3 and C18:1 species were present in equal amounts. As would be predicted in the presence of high activity of a selective MGAT, the hepatic glycerolipids from neonatal rats showed increases in dienoic, trienoic, and C22:6 fatty acids and relative decreases in monoenoic, saturated, and C20:4 fatty acids. We hypothesize that, during lipolysis, the reacylation of sn-2-monoacylglycerols by MGAT may provide a mechanism by which essential fatty acids are retained within specific tissues.


Sign in / Sign up

Export Citation Format

Share Document