The role of grain size and strain in work hardening and texture development

1989 ◽  
Vol 20 (12) ◽  
pp. 2803-2810 ◽  
Author(s):  
Dorte Juul Jensen ◽  
Anthony W. Thompson ◽  
Niels Hansen
1988 ◽  
pp. 329-335
Author(s):  
A. Z. Mohamed ◽  
M. M. Mostafa ◽  
M.S. Sakr ◽  
A. A. El-Daly

1988 ◽  
Vol 110 (1) ◽  
pp. K13-K17 ◽  
Author(s):  
A. Z. Mohamed ◽  
M. M. Mostafa ◽  
M. S. Sakr ◽  
A. A. El-Daly

2007 ◽  
Vol 558-559 ◽  
pp. 195-200
Author(s):  
S.Y. Han ◽  
R.L. Higginson ◽  
Eric J. Palmiere

It is well known that the deformation and recrystallisation of metals and alloys are accompanied by changes in texture and microstructure. These changes can lead to anisotropy in metal flow and affect the formability of sheet metals. Therefore, a significant amount of research on the development of textures and the principles governing them has been conducted in recent years. One of the most important factors contributing to the texture development of materials is the initial grain size. Unlike other factors such as stacking fault energy, strain and deformation temperature, relatively little work has been carried out on the effect of grain size on texture development, even though a considerable understanding exists regarding the effect of grain size on work hardening and recrystallisation kinetics upon annealing. Hence, this research describes the effect of the initial hot band grain size on the development of texture during cold rolling and subsequent annealing.


Wear ◽  
2021 ◽  
pp. 203678
Author(s):  
Vahid Javaheri ◽  
Oskari Haiko ◽  
Saeed Sadeghpour ◽  
Kati Valtonen ◽  
Jukka Kömi ◽  
...  

2017 ◽  
Vol 18 (12) ◽  
pp. 4342-4355 ◽  
Author(s):  
Andrew J. Turner ◽  
Richard F. Katz ◽  
Mark D. Behn ◽  
Tobias Keller

2000 ◽  
Vol 23 (1) ◽  
pp. 47-49 ◽  
Author(s):  
K. T. Kashyap ◽  
C. Ramachandra ◽  
C. Dutta ◽  
B. Chatterji

Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1019 ◽  
Author(s):  
Angella ◽  
Donnini ◽  
Ripamonti ◽  
Górny ◽  
Zanardi

Tensile testing on ductile iron GJS 400 with different microstructures produced through four different cooling rates was performed in order to investigate the relevance of the microstructure’s parameters on its plastic behaviour. Tensile flow curve modelling was carried out with the Follansbee and Estrin-Kocks-Mecking approach that allowed for an explicit correlation between plastic behaviour and some microstructure parameters. In the model, the ferritic grain size and volume fraction of pearlite and ferrite gathered in the first part of this investigation were used as inputs, while other parameters, like nodule count and interlamellar spacing in pearlite, were neglected. The model matched very well with the experimental flow curves at high strains, while some mismatch was found only at small strains, which was ascribed to the decohesion between the graphite nodules and the ferritic matrix that occurred just after yielding. It can be concluded that the plastic behaviour of GJS 400 depends mainly on the ferritic grain size and pearlitic volume fraction, and other microstructure parameters can be neglected, primarily because of their high nodularity and few defects.


Sign in / Sign up

Export Citation Format

Share Document