scholarly journals Cellular automaton simulation of microstructure evolution during austenite decomposition under continuous cooling conditions

2001 ◽  
Vol 24 (3) ◽  
pp. 305-312 ◽  
Author(s):  
M. R. Varma ◽  
R. Sasikumar ◽  
S. G. K. Pillai ◽  
P. K. Nair



2014 ◽  
Vol 1004-1005 ◽  
pp. 235-238 ◽  
Author(s):  
Ying Zhi ◽  
Wei Jie Liu ◽  
Xiang Hua Liu

The model of cellular automaton (CA) for simulating the martensitic transformation of the high strength and elongation steel during quenching was established. The microstructure evolution of martensitic transformation of high strength and elongation steel during continuous cooling was simulated dynamically, in terms of parameters such as the volume fraction and morphology of the martensite and retained austenite were quantitatively, accurately and visually described. The simulation results could provide a theoretical reference for the control of the microstructure and property of high strength and elongation steel.





Author(s):  
Jyrki Miettinen ◽  
Sami Koskenniska ◽  
Mahesh Somani ◽  
Seppo Louhenkilpi ◽  
Aarne Pohjonen ◽  
...  

AbstractNew continuous cooling transformation (CCT) equations have been optimized to calculate the start temperatures and critical cooling rates of phase formations during austenite decomposition in low-alloyed steels. Experimental CCT data from the literature were used for applying the recently developed method of calculating the grain boundary soluble compositions of the steels for optimization. These compositions, which are influenced by solute microsegregation and precipitation depending on the heating/cooling/holding process, are expected to control the start of the austenite decomposition, if initiated at the grain boundaries. The current optimization was carried out rigorously for an extended set of steels than used previously, besides including three new solute elements, Al, Cu and B, in the CCT-equations. The validity of the equations was, therefore, boosted not only due to the inclusion of new elements, but also due to the addition of more low-alloyed steels in the optimization. The final optimization was made with a mini-tab tool, which discarded statistically insignificant parameters from the equations and made them prudently safer to use. Using a thermodynamic-kinetic software, IDS, the new equations were further validated using new experimental CCT data measured in this study. The agreement is good both for the phase transformation start temperatures as well as the final phase fractions. In addition, IDS simulations were carried out to construct the CCT diagrams and the final phase fraction diagrams for 17 steels and two cast irons, in order to outline the influence of solute elements on the calculations and their relationship with literature recommendations.



2004 ◽  
Vol 120 ◽  
pp. 225-230
Author(s):  
P. Mukhopadhyay ◽  
M. Loeck ◽  
G. Gottstein

A more refined 3D cellular Automata (CA) algorithm has been developed which has increased the resolution of the space and reduced the computation time and can take care of the complexity of recrystallization process through physically based solutions. This model includes recovery, condition for nucleation and orientation dependent variable nuclei growth as a process of primary static recrystallization. Incorporation of microchemistry effects makes this model suitable for simulating recrystallization behaviour in terms of texture, kinetics and microstructure of different alloys. The model is flexible to couple up with other simulation programs on a common database.



2019 ◽  
Vol 6 (10) ◽  
pp. 106592 ◽  
Author(s):  
Hongbo Pan ◽  
Jinghua Cao ◽  
Bin Fu ◽  
Weiming Liu ◽  
Xiaohui Shen ◽  
...  


2000 ◽  
Vol 6 (S2) ◽  
pp. 350-351
Author(s):  
S. S. Babu ◽  
S. A. David ◽  
M. K. Miller

The characterization of the microstructure evolution during welding of nickel base superalloys is required for efficient reuse and reclamation of used and failed components. Previous atom probe analysis of electron-beam and laser-beam welds revealed complex alloying elemental partitioning between the γ and γ phases. Rapid cooling conditions in the weld leads to non-equilibrium partitioning and large amplitude Cr and Co levels in the γ phase. These results indicated that there is a strong relationship between weld cooling rate and the precipitation of γ′ precipitates from the γ phase. To understand and develop predictive models, a systematic investigation of the microstructure evolution in CM247DS alloy under controlled thermomechanical conditions are being performed. This paper describes some recent results on the elemental partitioning between γ and γ′ phases obtained with atom probe microanalysis.



2019 ◽  
Vol 38 (2019) ◽  
pp. 567-575 ◽  
Author(s):  
Qingfu Tang ◽  
Dong Chen ◽  
Bin Su ◽  
Xiaopeng Zhang ◽  
Hongzhang Deng ◽  
...  

AbstractThe microstructure evolution of U-Nb alloys during solidification and consequent cooling process was simulated using a cellular automaton (CA) model. By using this model, ϒ phase precipitation and monotectoid decomposition were simulated, and dendrite morphology of ϒ phase, Nb microsegregation and kinetics of monotectoid decomposition were obtained. To validate the model, an ingot of U-5.5Nb (wt.%) was produced and temperature measuring experiment was carried out. As-cast microstructure at different position taken from the ingot was investigated by using optical microscope and SEM. The effect of cooling rate on ϒ phase precipitation and monotectoid decomposition of U-Nb alloys was also studied. The simulated results were compared with the experimental results and the capability of the model for quantitatively predicting the microstructure evolution of U-Nb alloys during solidification and consequent cooling process was assessed.



Sign in / Sign up

Export Citation Format

Share Document