cast microstructure
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 30)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 2152 (1) ◽  
pp. 012022
Author(s):  
Gaozhan Zhao ◽  
Zhihui Xing ◽  
Ming Li ◽  
Shiqing Gao ◽  
Jianquan Tao ◽  
...  

Abstract The as-cast microstructure of a typical hypereutectic Al-25Si alloy was studied, and the growth mechanism of different primary silicon phases was analyzed. The results show that the as-cast microstructure phase composition of the alloy is mainly primary silicon and eutectic silicon. Primary silicon is mainly petal-like, massive and other complex polyhedrons, and there are a lot of cavities, cracks and other defects in the interior and boundary; Eutectic silicon is coarse and long needle-like, and the distribution is relatively messy, which seriously deteriorates the mechanical properties and cutting performance, and hinders the further application of the alloy in the field of lightweight pistons. Petal-shaped primary silicon is grown by combining five tetrahedral crystal nuclei in the melt into a decahedron, while bulk primary silicon is mainly caused by the unbalanced aggregation of impurity elements. And these two types of silicon phase growth methods are related to the twin groove growth mechanism, which is the result of a combination of multiple mechanisms.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1551
Author(s):  
Jaka Burja ◽  
Barbara Šetina Batič ◽  
Tilen Balaško

Lightweight Fe-Mn-Al-C steels have low density, and high mechanical properties, which makes them a possibility for weight reduction in vehicles for road transport. In steel production, as-cast microstructure is an important parameter for further processing. The as-cast microstructure of five lightweight duplex steels was investigated: Fe-15Mn-10Al-0.8C, Fe-15Mn-10Al-1.7Ni-0.8C, Fe-15Mn-10Al-3.9Ni-0.8C, Fe-15Mn-10Al-5.6Ni-0.8C and Fe-15Mn-10Al-8.6Ni-0.8C. The influence of Ni was analysed through thermodynamic calculations and microstructural characterization. The samples were analysed through an optical and electron microscopy. The base microstructure of the studied steel consists of ferrite and austenite. Further investigation showed that the decomposition of austenite was accompanied by the formation of kappa carbides and the B2 ordered phase. The addition of Ni prevented the formation of a lamellar kappa ferrite morphology, but at 5.6 wt.% Ni, the decomposition of austenite was most severe, resulting in a large amount of kappa carbides and a B2 ordered phase.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1797
Author(s):  
Evgenii Aryshenskii ◽  
Maksim Lapshov ◽  
Jurgen Hirsch ◽  
Sergey Konovalov ◽  
Viacheslav Bazhenov ◽  
...  

This research is devoted to the study effects of complex alloying of Al-0.3 wt.% Mg-1 wt.% Si and Al-0.5 wt.% Mg-1.3 wt.% Si alloys by small additions of Sc and Zr on the microstructure in the as-cast condition. The effect of small additions of these elements on the microhardness, electrical conductivity, grain size and phase composition of the indicated alloy systems was studied. The methods of optical and electron microscopy were used for the study. Moreover, the phase composition was calculated using the Thermo-Calc software package. The study showed a strong effect of the chemical composition of investigated alloys on the size of the grains, which, with a certain combination of additives, can decrease several times. Grain refinement occurs both due to supercooling and formation of primary Al3Sc particles in the liquid phase. Alloys based on Al-0.5 wt.% Mg-1.3 wt.% Si are more prone to the formation of this phase since a lower concentration of Sc is required for it to occur. In addition, more silicon interacts with other elements. At the same time, Al-0.3 wt.% Mg-1 wt.% Si requires lower temperature for complete dissolution of Mg2Si, which can contribute to more efficient heat treatment, which includes reducing the number of steps. TEM data show that during ingot cooling (AlSi)3ScZr dispersoid precipitates. This dispersoid could precipitate as coherent and semi-coherent particles with L12 structure as well as needle-shaped particles. The precipitation of coherent and semi-coherent particles during cooling of the ingot indicates that they can be obtained during subsequent multistage heat treatment. In addition, in the Al0,5Mg1,3Si0,3Sc alloy, metastable β’’ (Mg5Si6) are precipitated.


2021 ◽  
Vol 175 ◽  
pp. 111075
Author(s):  
Te Lei ◽  
Li Jiang ◽  
Xiang-Xi Ye ◽  
Chao-Wen Li ◽  
Jian-Ping Liang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 67 (3 May-Jun) ◽  
pp. 516
Author(s):  
J. A. Aragón-Lezama ◽  
A. Garcia-Borquez ◽  
G. Torres-Villaseñor

Zn22Al2Cu cellular alloy was prepared with six different densities, two microstructures and two cell shapes to determine the effect of these factors on its compressive behavior. NaCl granules with sharp edges, as purchased and with smooth edges obtained by roughly polishing the purchased granules were used as spacers. The elaboration process of the alloy foam consisted of melting the alloy, immersing the granules in the liquid alloy, air-cooling and then dissolving the salt in boiling water. The matrix obtained with the materials had an as-cast microstructure, and a fine microstructure, which was achieved with a heat treatment applied prior to dissolving the NaCl granules. Samples were tested in compression at a 10-3 s-1 strain rate. The smooth shape of the cells caused that the as-cast microstructure in the matrix produces an elastic behavior, which is described by the equation derived by Ashby for the relative elastic modulus and the relative density of sponges. The same type of cell shape embedded in the fine microstructure produces an elastic behavior in compression that depends on the density, which is typical of very low-density foams, although much lower than those achieved in this study. Compressive behavior is chaotic when cells have sharp shape, regardless microstructure type. The alloy studied with 4 mm mean size cells has a compression behavior like a sponge or low-density foam, when its cell walls have smooth contours, and as-cast or fine microstructure, respectively.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 539
Author(s):  
Gonçalo M. Gorito ◽  
Aida B. Moreira ◽  
Pedro Lacerda ◽  
Manuel F. Vieira ◽  
Laura M. M. Ribeiro

Cast Ni-Si-B alloys have the potential for high-temperature applications because of their high resistance to wear, impact, corrosion, and oxidation at elevated temperatures due to an appropriate balance of hard phases and austenite that ensures a good compromise between toughness and hardness. In this work, NiSi3B2 specimens, fabricated by the lost-wax casting process, were investigated. Given the complex multiphase cast microstructure, a differential scanning calorimeter (DSC-TGA) analysis was employed to characterize the reactions that occur during solidification and the resulting phases were characterized using scanning electron microscopy (SEM), with energy-dispersive microanalysis (EDS) and backscattered electron (BSE) image and X-ray diffraction (XRD). Due to the presence of hard phases, machining of the Ni-Si-B components can pose additional difficulties. Therefore, the conditions of the solution heat treatment, which might lead to the homogenization of the microstructure, consequently improving its machinability, were also investigated. The results of the heat-treated samples indicated that the dissolution of the eutectic constituent is accompanied by a significant decrease in the hardness (approximately 17%). It is important to emphasize that the solution heat treatments carried out reduced the hardness without affecting the percentage of borides, which will allow improving the machinability without adversely affecting the alloy performance in service.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Snehashish Tripathy ◽  
Sandip Ghosh Chowdhury

AbstractA novel directional inoculation technique has been designed to cast thin slab ingots containing Goss (or near Goss) oriented components in the as cast microstructure under the combined effect of oriented nucleation and oriented growth. The same has been targeted so as to retain Goss orientations and simultaneously develop γ fiber components (ranging from {111}<$$1\overline{1}0$$ 1 1 ¯ 0 > to {111}<112>) during hot rolling. The designed scheme of directional inoculation achieved oriented nucleation by the effect of exogenously added soft magnetic inoculants under magnetic field and oriented growth by the effect of fast cooling rates prevailing in the mould. The choice of 65Fe–35Co (wt%) system as soft magnetic inoculants was made taking into account the similarity in crystal structure and lattice parameter. The chemically synthesized inoculants under the effect of external magnetic field during solidification were able to exhibit directional inoculation. Variation in the cast microstructure and microtexture by varying the extent of inoculant addition was studied by EBSD technique. The ingots cast under different conditions were subjected to a designed hot rolling schedule and the through process microstructural and microtextural evolution was assessed. It was observed that fine equiaxed grains with initial cube orientations in the as cast structure could lead to the most desirable microstructural as well as microtextural gradient in the hot band.


Sign in / Sign up

Export Citation Format

Share Document