scholarly journals Abundance and relationship of bacteria with transparent exopolymer particles during the 1996 summer monsoon in the Arabian Sea

2000 ◽  
Vol 109 (4) ◽  
pp. 443-451 ◽  
Author(s):  
N. Ramaiah ◽  
V. V. S. S. Sarma ◽  
Mangesh Gauns ◽  
M. Dileep Kumar ◽  
M. Madhupratap
2021 ◽  
Vol 166 ◽  
pp. 105278
Author(s):  
K.U. Abdul Jaleel ◽  
Usha V. Parameswaran ◽  
Aiswarya Gopal ◽  
Chippy Khader ◽  
V.N. Sanjeevan ◽  
...  

Tellus ◽  
1974 ◽  
Vol 26 (4) ◽  
pp. 464-476 ◽  
Author(s):  
Kshudiram Saha
Keyword(s):  

Tellus ◽  
1978 ◽  
Vol 30 (2) ◽  
pp. 117-125 ◽  
Author(s):  
S. K. Ghosh ◽  
M. C. Pant ◽  
B. N. Dewan

2013 ◽  
Vol 141 (6) ◽  
pp. 2096-2106 ◽  
Author(s):  
V. V. M. Jagannadha Rao ◽  
M. Venkat Ratnam ◽  
Y. Durga Santhi ◽  
M. Roja Raman ◽  
M. Rajeevan ◽  
...  

Abstract Global positioning system (GPS) radio occultation (RO) data available during 2001–10 have been used to examine the variations in the refractivity during the onset of Indian summer monsoon (ISM) over the east Arabian Sea (5°–15°N, 65°–75°E). An enhancement of 5–10 N-units in the refractivity is observed around 4.8 km (~600 hPa) a few days (9.23 ± 3.6 days) before onset of the monsoon over Kerala, India. This is attributed to moisture buildup over the Arabian Sea during the monsoon onset phase. A sudden increase (1.5–2 K) in mean upper-tropospheric temperature at the time of onset and during the active phase of the monsoon is attributed to convective activity and the release of latent heat. On the day of monsoon onset over Kerala, an appreciable dip in the refractivity is observed that persisted for 1–3 days followed by an enhancement in refractivity with the active phase of the monsoon. An arbitrary value of 128 N-units difference between 4.8 km (~600 hPa) and 16 km (~100 hPa) coupled with a dip in refractivity on the day of monsoon arrival might give an indication of clear transition of atmospheric conditions and the detection of monsoon onset. Further, a good relation is also found between the activity of monsoon and variability in the refractivity.


2018 ◽  
Vol 157 (6) ◽  
pp. 908-919 ◽  
Author(s):  
Mingjiang Cai ◽  
Zhaokai Xu ◽  
Peter D. Clift ◽  
Boo-Keun Khim ◽  
Dhongil Lim ◽  
...  

AbstractWe present a new set of clay mineral and grain-size data for the siliciclastic sediment fraction from International Ocean Discovery Program (IODP) Site U1456 located in the eastern Arabian Sea to reconstruct the variabilities in the continental erosion and weathering intensity in the western Himalaya, elucidate the sediment source-to-sink processes and discuss the potential controls underlying these changes since 3.7 Ma. The clay minerals mainly consist of smectite (0–90%, average 44%) and illite (3–90%, average 44%), with chlorite (1–26%, average 7%) and kaolinite (0–19%, average 5%) as minor components. The compositional variations in the clay minerals at IODP Site U1456 suggest four phases of sediment provenance: the Indus River (phase 1, 3.7–3.2 Ma), the Indus River and Deccan Traps (phase 2, 3.2–2.6 Ma), the Indus River (phase 3, 2.6–1.2 Ma) and the Indus River and Deccan Traps (phase 4, 1.2–0 Ma). These provenance changes since 3.7 Ma can be correlated with variations in the Indian summer monsoon intensity. The siliciclastic sediments in the eastern Arabian Sea were mainly derived from the Indus River when the Indian summer monsoon was generally weak. In contrast, when the Indian summer monsoon intensified, the siliciclastic sediment supply from the Deccan Traps increased. In particular, this study shows that the smectite/(illite+chlorite) ratio is a sensitive tool for reconstructing the history of the variation in the Indian summer monsoon intensity over the continents surrounding the Arabian Sea since 3.7 Ma.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 562
Author(s):  
Mathieu Morvan ◽  
Xavier Carton

The Omani Coastal Current (OCC) flowing northward along the southern coast of Oman during the summer monsoon is associated with an upwelling system. The mesoscale circulation of the western Arabian Sea is dominated by energetic mesoscale eddies down to about 1000 m depth. They drive the pathways of the upwelling water masses and the Persian Gulf Outflow water. This paper focuses on the sub-mesoscale frontal dynamics in the OCC by analyzing the results from a regional realistic numerical simulation performed with a primitive equation model. Off the Omani coast, the interaction between the upwelling fronts and the mesoscale eddies triggers the frontogenesis at play in the surface mixed layer during the summer monsoon. In spring, sub-mesoscale eddies are generated at the Cape of Ra’s al Hadd due to the horizontal shear instabilities undergone by the OCC. The OCC also drives and elongates Peddies formed during the Summer monsoon and located below the thermocline. Finally, the interaction between mesoscale eddies and the upwelling system leads to the formation of sub-mesoscale eddies at depth through baroclinic instabilities.


Sign in / Sign up

Export Citation Format

Share Document