On the polarimetric measurement of electron density and poloidal magnetic field in tokamaks

1981 ◽  
Vol 66 (2) ◽  
pp. 153-163 ◽  
Author(s):  
S. E. Segre
2021 ◽  
Vol 503 (1) ◽  
pp. 362-375
Author(s):  
L Korre ◽  
NH Brummell ◽  
P Garaud ◽  
C Guervilly

ABSTRACT Motivated by the dynamics in the deep interiors of many stars, we study the interaction between overshooting convection and the large-scale poloidal fields residing in radiative zones. We have run a suite of 3D Boussinesq numerical calculations in a spherical shell that consists of a convection zone with an underlying stable region that initially compactly contains a dipole field. By varying the strength of the convective driving, we find that, in the less turbulent regime, convection acts as turbulent diffusion that removes the field faster than solely molecular diffusion would do. However, in the more turbulent regime, turbulent pumping becomes more efficient and partially counteracts turbulent diffusion, leading to a local accumulation of the field below the overshoot region. These simulations suggest that dipole fields might be confined in underlying stable regions by highly turbulent convective motions at stellar parameters. The confinement is of large-scale field in an average sense and we show that it is reasonably modelled by mean-field ideas. Our findings are particularly interesting for certain models of the Sun, which require a large-scale, poloidal magnetic field to be confined in the solar radiative zone in order to explain simultaneously the uniform rotation of the latter and the thinness of the solar tachocline.


The influence of the earth’s magnetic field on the propagation of wireless waves in the ionosphere has stimulated interest in the problem of the propagation of electromagnetic waves through a non-isotropic medium which is stratified in planes. Although the differential equations of such a medium have been elegantly deduced by Hartree,f it appears that no solution of them has yet been published for a medium which is both non-isotropic and non-homogeneous. Thus the work of Gans and Hartree dealt only with a stratified isotropic medium, while in the mathematical theory of crystal-optics the non-isotropic medium is always assumed to be homogeneous. In the same way Appleton’s magneto-ionic theory of propagation in an ionized medium under the influence of a magnetic field is confined to consideration of the “ characteristic ”waves which can be propagated through a homogeneous medium without change of form. In applying to stratified non-isotropic media these investigations concerning homogeneous non-isotropic media difficulty arises from the fact that the polarizations of the characteristic waves in general vary with the constitution of the medium, and it is not at all obvious that there exist waves which are propagated independently through the stratified medium and which are approximately characteristic at each stratum. The existence of such waves has usually been taken for granted, although for the ionosphere doubt has been cast upon this assumption by Appleton and Naismith, who suggest that we might “ expect the components ( i. e ., characteristic waves) to be continually splitting and resplitting”, even if the increase of electron density “ takes place slowly with increase of height”. It is clear that, until the existence of independently propagated approximately characteristic waves has been established, at any rate for a slowly-varying non-isotropic medium, no mathematical justification exists for applying Appleton's magnetoionic theory to the ionosphere. It is with the provision of this justification that we are primarily concerned in the present paper. This problem has been previously considered by Försterling and Lassen,f but we feel that their work does not carry conviction because they did not base their calculations on the differential equations for a non-homo-geneous medium, and were apparently unable to deal with the general case in which the characteristic polarizations vary with the constitution of the medium.


2000 ◽  
Vol 18 (10) ◽  
pp. 1257-1262 ◽  
Author(s):  
A. V. Pavlov ◽  
T. Abe ◽  
K.-I. Oyama

Abstract. We present a comparison of the electron density and temperature behaviour in the ionosphere and plasmasphere measured by the Millstone Hill incoherent-scatter radar and the instruments on board of the EXOS-D satellite with numerical model calculations from a time-dependent mathematical model of the Earth's ionosphere and plasmasphere during the geomagnetically quiet and storm period on 20–30 January, 1993. We have evaluated the value of the additional heating rate that should be added to the normal photoelectron heating in the electron energy equation in the daytime plasmasphere region above 5000 km along the magnetic field line to explain the high electron temperature measured by the instruments on board of the EXOS-D satellite within the Millstone Hill magnetic field flux tube in the Northern Hemisphere. The additional heating brings the measured and modelled electron temperatures into agreement in the plasmasphere and into very large disagreement in the ionosphere if the classical electron heat flux along magnetic field line is used in the model. A new approach, based on a new effective electron thermal conductivity coefficient along the magnetic field line, is presented to model the electron temperature in the ionosphere and plasmasphere. This new approach leads to a heat flux which is less than that given by the classical Spitzer-Harm theory. The evaluated additional heating of electrons in the plasmasphere and the decrease of the thermal conductivity in the topside ionosphere and the greater part of the plasmasphere found for the first time here allow the model to accurately reproduce the electron temperatures observed by the instruments on board the EXOS-D satellite in the plasmasphere and the Millstone Hill incoherent-scatter radar in the ionosphere. The effects of the daytime additional plasmaspheric heating of electrons on the electron temperature and density are small at the F-region altitudes if the modified electron heat flux is used. The deviations from the Boltzmann distribution for the first five vibrational levels of N2(v) and O2(v) were calculated. The present study suggests that these deviations are not significant at the first vibrational levels of N2 and O2 and the second level of O2, and the calculated distributions of N2(v) and O2(v) are highly non-Boltzmann at vibrational levels v > 2. The resulting effect of N2(v > 0) and O2(v > 0) on NmF2 is the decrease of the calculated daytime NmF2 up to a factor of 1.5. The modelled electron temperature is very sensitive to the electron density, and this decrease in electron density results in the increase of the calculated daytime electron temperature up to about 580 K at the F2 peak altitude giving closer agreement between the measured and modelled electron temperatures. Both the daytime and night-time densities are not reproduced by the model without N2(v > 0) and O2(v > 0), and inclusion of vibrationally excited N2 and O2 brings the model and data into better agreement.Key words: Ionosphere (ionospheric disturbances; ionosphere-magnetosphere interactions; plasma temperature and density)  


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 822
Author(s):  
Hyo-Jun Joo ◽  
Dae-Hwan Kim ◽  
Hyun-Seok Cha ◽  
Sang-Hun Song

We measured and analyzed the Hall offset voltages in InGaZnO thin-film transistors. The Hall offset voltages were found to decrease monotonously as the electron densities increased. We attributed the magnitude of the offset voltage to the misalignment in the longitudinal distance between the probing points and the electron density to Fermi energy of the two-dimensional electron system, which was verified by the coincidence of the Hall voltage with the perpendicular magnetic field in the tilted magnetic field. From these results, we deduced the combined conduction band edge energy profiles from the Hall offset voltages with the electron density variations for three samples with different threshold voltages. The extracted combined conduction band edge varied by a few tens of meV over a longitudinal distance of a few tenths of µm. This result is in good agreement with the value obtained from the analysis of percolation conduction.


1993 ◽  
Vol 41 (11-12) ◽  
pp. 919-930 ◽  
Author(s):  
D.J. Southwood ◽  
M.K. Dougherty ◽  
P. Canu ◽  
A. Balogh ◽  
P.J. Kellogg

2006 ◽  
Vol 2 (S238) ◽  
pp. 367-368
Author(s):  
Keigo Fukumura ◽  
Masaaki Takahashi ◽  
Sachiko Tsuruta

AbstractWe study magnetohydrodynamic (MHD) standing shocks in ingoing plasmas in a black hole (BH) magnetosphere. We find that low or mid latitude (non-equatorial) standing MHD shocks are both physically possible, creating very hot and/or magnetized plasma regions close to the event horizon. We also investigate the effects of the poloidal magnetic field and the BH spin on the properties of shocks and show that both effects can quantitatively affect the MHD shock solutions. MHD shock formation can be a plausible mechanism for creating high energy radiation region above an accretion disk in AGNs.


Sign in / Sign up

Export Citation Format

Share Document