Differentials of magnetic-charge currents and consequent revision of electric-charge quantization rule

1989 ◽  
Vol 102 (3) ◽  
pp. 925-934
Author(s):  
J. -P. M. Lebrun
2016 ◽  
Vol 31 (24) ◽  
pp. 1650133
Author(s):  
Yanbin Deng ◽  
Changyu Huang ◽  
Yong-Chang Huang

It was suggested by dimensional analysis that there exists a limit called the Planck energy scale coming close to which the gravitational effects of physical processes would inflate and struggle for equal rights so as to spoil the validity of pure nongravitational physical theories that governed well below the Planck energy. Near the Planck scale, the Planck charges, Planck currents, or Planck parameters can be defined and assigned to physical quantities such as the single particle electric charge and magnetic charge as the ceiling value obeyed by the low energy ordinary physics. The Dirac electric-magnetic charge quantization relation as one form of electric-magnetic duality dictates that, the present low value electric charge corresponds to a huge magnetic charge value already passed the Planck limit so as to render theories of magnetic monopoles into the strong coupling regime, and vice versa, that small and tractable magnetic charge values correspond to huge electric charge values. It suggests that for theoretic models in which the renormalization group equation provides rapid growth for the running electric coupling constant, it is easier for the dual magnetic monopoles to emerge at lower energy scales. Allowing charges to vary with the Dirac electric-magnetic charge quantization relation while keeping values under the Planck limit informs that the magnetic charge value drops below the Planck ceiling value into the manageable region when the electric coupling constant grows to one fourth at a model dependent energy scale, and continues dropping toward half the value of the Planck magnetic charge as the electric coupling constant continues growing at the model dependent rate toward one near Planck energy scale.


1991 ◽  
Vol 06 (18) ◽  
pp. 1631-1642 ◽  
Author(s):  
SIDNEY COLEMAN ◽  
JOHN PRESKILL ◽  
FRANK WILCZEK

We show that quantum hair can alter the relation between the temperature and the mass of a black hole. A ZN electric charge on a black hole generates an electric field that is non-perturbative in ħ. A ZN magnetic charge on a black hole can be described classically, and can support a stable remnant. For global quantum hair, in contrast to gauge hair, we find no dynamical effects.


2018 ◽  
Vol 33 (09) ◽  
pp. 1850053
Author(s):  
M. Shifman ◽  
A. Yung

Non-Abelian strings are considered in non-supersymmetric theories with fermions in various appropriate representations of the gauge group U[Formula: see text]. We derive the electric charge quantization conditions and the index theorems counting fermion zero modes in the string background both for the left-handed and right-handed fermions. In both cases we observe a non-trivial [Formula: see text] dependence.


2020 ◽  
Vol 35 (39) ◽  
pp. 2050327
Author(s):  
Sergio Giardino

We develop a quaternionic electrodynamics and show that it naturally supports the existence of magnetic monopoles. We obtained the field equations, the continuity equation, the electrodynamic force law, the Poynting vector, the energy conservation, and the stress-energy tensor. The formalism also enabled us to generalize the Dirac monopole and the charge quantization rule.


Universe ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. 117 ◽  
Author(s):  
Vicente Vento

Magnetic monopoles have been a subject of interest since Dirac established the relationship between the existence of monopoles and charge quantization. The Dirac quantization condition bestows the monopole with a huge magnetic charge. The aim of this study was to determine whether this huge magnetic charge allows monopoles to be detected by the scattering of charged ions and protons on matter where they might be bound. We also analyze if this charge favors monopolium (monopole–antimonopole) annihilation into many photons over two photon decays.


1991 ◽  
Vol 69 (10) ◽  
pp. 1304-1308
Author(s):  
C. Wolf

We calculate the screening of an electric charge brought about by the coupling of electromagnetism to a second gauge group carrying magnetic charge. The resultant classical calculation demonstrates that the electric charge is antiscreened by magnetic charge. The total mass of the configuration is also evaluated including that due to the coupling of electromagnetism to the magnetic charge of a second U(1) gauge group.


Sign in / Sign up

Export Citation Format

Share Document