Physiological mechanisms of frost tolerance: Possible role of protein in plant adaptation to cold

1977 ◽  
Vol 19 (1) ◽  
pp. 10-17 ◽  
Author(s):  
Alina Kacperska-Palacz ◽  
Ewa Dlugokecka ◽  
Jolanta Breitenwald ◽  
Barbara Wciślińska
Author(s):  
Yu. Е. Kolupaev ◽  
◽  
Е. I. Gorelova ◽  
Т. О. Yastreb ◽  
◽  
...  

2021 ◽  
Vol 10 (16) ◽  
pp. 3457
Author(s):  
Kamila Kolanska ◽  
Sofiane Bendifallah ◽  
Geoffroy Canlorbe ◽  
Arsène Mekinian ◽  
Cyril Touboul ◽  
...  

The molecular responses to hormonal stimuli in the endometrium are modulated at the transcriptional and post-transcriptional stages. Any imbalance in cellular and molecular endometrial homeostasis may lead to gynecological disorders. MicroRNAs (miRNAs) are involved in a wide variety of physiological mechanisms and their expression patterns in the endometrium are currently attracting a lot of interest. miRNA regulation could be hormone dependent. Conversely, miRNAs could regulate the action of sexual hormones. Modifications to miRNA expression in pathological situations could either be a cause or a result of the existing pathology. The complexity of miRNA actions and the diversity of signaling pathways controlled by numerous miRNAs require rigorous analysis and findings need to be interpreted with caution. Alteration of miRNA expression in women with endometriosis has been reported. Thus, a potential diagnostic test supported by a specific miRNA signature could contribute to early diagnosis and a change in the therapeutic paradigm. Similarly, specific miRNA profile signatures are expected for RIF and endometrial cancer, with direct implications for associated therapies for RIF and adjuvant therapies for endometrial cancer. Advances in targeted therapies based on the regulation of miRNA expression are under evaluation.


1997 ◽  
Vol 86 (3) ◽  
pp. 269-282 ◽  
Author(s):  
William N. Charman ◽  
Christopher J.H. Porter ◽  
Sabena Mithani ◽  
Jennifer B. Dressman

2006 ◽  
Vol 55 (1-6) ◽  
pp. 278-284 ◽  
Author(s):  
E. G. Kirby ◽  
F. Gallardo ◽  
H. Man ◽  
R. El-Khatib

Abstract In investigating the pivotal role of glutamine synthetase in woody plant development, we have strived to develop an understanding of the biochemical and physiological mechanisms whereby enhanced expression of glutamine synthetase (GS) in poplar contributes to vegetative growth through enhanced nitrogen use efficiency. Considerable effort has also centered on characterization of enhanced resistance of transgenic GS overexpressor lines to abiotic stresses and proposed mechanisms. This summary of our work also focuses on future applications in forest tree improvement.


2019 ◽  
Vol 14 (1) ◽  
pp. 126-136
Author(s):  
A. Ya. Tamakhina ◽  
A. A. Akhkubekova ◽  
A. B. Ittiev

Aim.The aim of the work described herein was to study the dynamics of allantoin accumulation in the underground phytomass ofEchium vulgareL.,Symphytum caucasicumM. Bieb. andS. asperumLepech. as well as to clarify the role of allantoin in plant adaptation to stress factors.Methods.We studied the roots of plants growing in the foothill (Nalchik, 490–512 m above sea level) and the mountain zones of the Kabardino-Balkarian Republic (Terskol village, 2530 m above sea level; Verkhnyaya Balkaria village, 2680 m above sea level). The roots were collected at the stages of rosetting, flowering, fruiting and at the end of the growing season. Aqueous-alcoholic extracts of shredded roots were analyzed by high-performance liquid chromatography.Results.The highest content of allantoin in the roots ofEchium vulgare,Symphytum caucasicum,S. asperumplants was noted at the end of the growing season, respectively 0.915; 0.342–0.658; 2,842–3,426%. Under conditions of low temperatures and increased solar radiation, the content of allantoin in the roots increases 1.2–1.9 times as compared with the plants of the foothill zone.Conclusion.Allantoin plays an important role in the process of adapting species of the family Boraginaceae to oxidative stress caused by hypothermia and increased solar radiation.


2019 ◽  
Vol 317 (2) ◽  
pp. G203-G209 ◽  
Author(s):  
Yanyan Jiang ◽  
Beverley Greenwood-Van Meerveld ◽  
Anthony C. Johnson ◽  
R. Alberto Travagli

Symptoms of functional gastrointestinal disorders (FGIDs), including fullness, bloating, abdominal pain, and altered gastrointestinal (GI) motility, present a significant clinical problem, with a reported prevalence of 25%–40% within the general population. More than 60% of those affected seek and require healthcare, and affected individuals report a significantly decreased quality of life. FGIDs are highly correlated with episodes of acute and chronic stress and are increased in prevalence and reported severity in women compared with men. Although there is evidence that sex and stress interact to exacerbate FGID symptoms, the physiological mechanisms that mediate these sex-dependent disparities are incompletely understood, although hormonal-related differences in GI motility and visceral sensitivity have been purported to play a significant role in the etiology. In this mini review, we will discuss brain-gut axis control of GI motility and sensitivity, the influence of estrogen on GI motility and sensitivity, and stress modulation of the brain-gut axis.


Sign in / Sign up

Export Citation Format

Share Document