A test of Snowmelt Runoff Model (SRM) for the Gongnaisi River basin in the western Tianshan Mountains, China

2003 ◽  
Vol 48 (20) ◽  
pp. 2253-2259 ◽  
Author(s):  
Hong Ma ◽  
Guodong Cheng
1989 ◽  
Vol 20 (3) ◽  
pp. 167-178 ◽  
Author(s):  
B. Dey ◽  
V. K. Sharma ◽  
A. Rango

In the Snowmelt-Runoff Model (SRM), the estimate of discharge volume is based on temperature condition in the form of degree days which are used to melt the snowpack in the area of the basin covered by snow as observed from satellites. Precipitation input is used to add any rainfall runoff to the snowmelt component. When SRM was applied to the large, international Kabul River basin, initial simulations were much above the observed stream flow values. Close inspection revealed several problems in the application of SRM to the Kabul Basin that were easily corrected. Foremost among the corrections were determination of an appropriate lapse rate, substitution of a more representative mean elevation for extrapolation of temperature data, and use of an automatic streamflow updating procedure. These improvements led to a simulation for 1976 that was comparable to other simulations on large, inaccessible basins. As SRM is applied to more basins similar to the Kabul River, the determination of suitable parameters for new basin will be enhanced. Additional improvements in simulations would result from installation of climate stations at the mean elevation of basins and work to assure delivery of timely and reliable satellite snow cover data.


2020 ◽  
Vol 12 (12) ◽  
pp. 1951 ◽  
Author(s):  
Til Prasad Pangali Sharma ◽  
Jiahua Zhang ◽  
Narendra Raj Khanal ◽  
Foyez Ahmed Prodhan ◽  
Basanta Paudel ◽  
...  

The Himalayan region, a major source of fresh water, is recognized as a water tower of the world. Many perennial rivers originate from Nepal Himalaya, located in the central part of the Himalayan region. Snowmelt water is essential freshwater for living, whereas it poses flood disaster potential, which is a major challenge for sustainable development. Climate change also largely affects snowmelt hydrology. Therefore, river discharge measurement requires crucial attention in the face of climate change, particularly in the Himalayan region. The snowmelt runoff model (SRM) is a frequently used method to measure river discharge in snow-fed mountain river basins. This study attempts to investigate snowmelt contribution in the overall discharge of the Budhi Gandaki River Basin (BGRB) using satellite remote sensing data products through the application of the SRM model. The model outputs were validated based on station measured river discharge data. The results show that SRM performed well in the study basin with a coefficient of determination (R2) >0.880. Moreover, this study found that the moderate resolution imaging spectroradiometer (MODIS) snow cover data and European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological datasets are highly applicable to the SRM in the Himalayan region. The study also shows that snow days have slightly decreased in the last three years, hence snowmelt contribution in overall discharge has decreased slightly in the study area. Finally, this study concludes that MOD10A2 and ECMWF precipitation and two-meter temperature products are highly applicable to measure snowmelt and associated discharge through SRM in the BGRB. Moreover, it also helps with proper freshwater planning, efficient use of winter water flow, and mitigating and preventive measures for the flood disaster.


2016 ◽  
Vol 9 (1) ◽  
pp. 109-118
Author(s):  
Hedayatullah Arian ◽  
Rijan B. Kayastha ◽  
Bikas C. Bhattarai ◽  
Ahuti Shresta ◽  
Hafizullah Rasouli ◽  
...  

This study is carried out on the Salang River basin, which is located at the northern part of the Kabul River basin, and in the south facing slope of the Hindu Kush Mountains. The basin drains through the Salang River, which is one of the tributaries of the Panjshir River. The basin covers an area of 485.9km2 with a minimum elevation of 1653 m a.s.l. and a maximum elevation of 4770 m a.s.l. The Salang River sustains a substantial flow of water in summer months due to the melting of snow. In this study, we estimate daily discharge of Salang River from 2009 to 2011 using the Snowmelt Runoff Model (SRM, Version 1.12, 2009), originally developed by J. Martinec in 1975. The model uses daily observed precipitation, air temperature and snow cover data as input variables from which discharge is computed. The model is calibrated for the year 2009 and validated for 2010 and 2011. The observed and calculated annual average discharges for the calibration year 2009 are 11.57m3s-1 and 10.73m3s-1, respectively. Similarly, the observed and calculated annual average discharges for the validation year 2010 are 11.55m3s-1 and 10.07m3s-1, respectively and for 2011, the discharges are 9.05 m3s-1 and 9.6m3s-1, respectively. The model is also tested by changing temperature and precipitation for the year 2009. With an increase of 1°C in temperature and 10% in precipitation, the increases in discharge for winter, summer and annually are 21.8%, 13.5% and 14.8%, respectively. With an increase of 2°C in temperature and 20% in precipitation, the increases are 48.5%, 43.3% and 44.1%, respectively. The results obtained suggest that the SRM can be used as a promising tool to estimate the river discharge of the snow fed mountainous river basins of Afghanistan and to study the impact of climate change on river flow pattern of such basins.Journal of Hydrology and Meteorology, Vol. 9(1) 2015, p.109-118


2016 ◽  
Vol 9 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Hafizullah Rasouli ◽  
Rijan B. Kayastha ◽  
Bikas C. Bhattarai ◽  
Ahuti Shrestha ◽  
Hedayatullah Arian ◽  
...  

In this study, we estimated discharge from Upper Kabul River basin in the Hindu Kush Mountain (Paghman range) in Afghanistan. The Upper Kabul River basin covers an area of 1633.8km2 with a maximum elevation of 4522 m and minimum elevation of 1877 m. The Kabul River is one of the main rivers in Afghanistan and sustains a significant flow of water in summer months due to the melting of snow. In this study, daily discharge from Upper Kabul River basin, west of Kabul basin, for 2009 and 2011 is estimated by using Snowmelt Runoff Model (SRM) (Version 1.12, 2009), originally developed my J. Martinec in 1975. Daily precipitation, air temperature, discharge and snow cover data are used in the model as input variables. We calibrated the model for 2009 and validated in 2011. The observed and calculated annual average discharges in 2009 are 5.7m3/s and 5.6m3/s, respectively; and in 2011 are 1.33m3/s and 1.31m3/s, respectively. The model results are in good agreement with the measured daily discharges. With an increase of 1°C in temperature and 10% precipitation, the increase in discharge in winter, summer and annually relative to 2009 discharge are 39%, 18.5% and 17.9%, respectively. Similarly, with an increase of 2°C in temperature and 20% in precipitation, modeled discharge increases by 51.2%, 40.8% and 47.3%, respectively. The results obtained suggest that the SRM can be used efficiently for estimating discharge in the snow fed sub-catchment of the Upper Kabul River basin and other mountain basins in Afghanistan.Journal of Hydrology and Meteorology, Vol. 9(1) 2015, p.85-94


2010 ◽  
Vol 62 (5) ◽  
pp. 1039-1045 ◽  
Author(s):  
Yan Dou ◽  
Xi Chen ◽  
Anmin Bao ◽  
Lanhai Li

Sign in / Sign up

Export Citation Format

Share Document