Lie point transformation group solutions of the nonlinear Vlasov-Maxwell equations

Author(s):  
B. Abraham-Shrauner
1985 ◽  
Vol 33 (2) ◽  
pp. 219-236 ◽  
Author(s):  
Dana Roberts

The general Lie point transformation group and the associated reduced differential equations and similarity forms for the solutions are derived here for the coupled (nonlinear) Vlasov–Maxwell equations in one spatial dimension. The case of one species in a background is shown to admit a larger group than the multi-species case. Previous exact solutions are shown to be special cases of the above solutions, and many of the new solutions are found to constrain the form of the distribution function much more than, for example, the BGK solutions do. The individual generators of the Lie group are used to find the possible subgroups. Finally, a simple physical argument is given to show that the asymptotic solution (t→∞) for a one-species, one-dimensional plasma is one of the general similarity solutions.


2012 ◽  
Vol 28 (3) ◽  
pp. 589-596 ◽  
Author(s):  
J.-L. Cai ◽  
F.-X. Mei

AbstractIn this paper, the conformal invariance and conserved quantities for higher-order holonomic systems are studied. Firstly, by establishing the differential equation of motion for the systems and introducing a one-parameter infinitesimal transformation group together with its infinitesimal generator vector, the determining equation of conformal invariance for the systems are provided, and the conformal factors expression are deduced. Secondly, the relation between conformal invariance and the Lie symmetry by the infinitesimal one-parameter point transformation group for the higher-order holonomic systems are deduced. Thirdly, the conserved quantities of the systems are derived using the structure equation satisfied by the gauge function. Lastly, an example of a higher-order holonomic mechanical system is discussed to illustrate these results.


2019 ◽  
Vol 485 (4) ◽  
pp. 428-433
Author(s):  
V. G. Baydulov ◽  
P. A. Lesovskiy

For the symmetry group of internal-wave equations, the mechanical content of invariants and symmetry transformations is determined. The performed comparison makes it possible to construct expressions for analogs of momentum, angular momentum, energy, Lorentz transformations, and other characteristics of special relativity and electro-dynamics. The expressions for the Lagrange function are defined, and the conservation laws are derived. An analogy is drawn both in the case of the absence of sources and currents in the Maxwell equations and in their presence.


1998 ◽  
Vol 63 (8) ◽  
pp. 1187-1201 ◽  
Author(s):  
Jaroslav Zamastil ◽  
Lubomír Skála ◽  
Petr Pančoška ◽  
Oldřich Bílek

Using the semiclassical approach for the description of the propagation of the electromagnetic waves in optically active isotropic media we derive a new formula for the circular dichroism parameter. The theory is based on the idea of the time damped electromagnetic wave interacting with the molecules of the sample. In this theory, the Lambert-Beer law need not be taken as an empirical law, however, it follows naturally from the requirement that the electromagnetic wave obeys the Maxwell equations.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter examines solutions to the Maxwell equations in a vacuum: monochromatic plane waves and their polarizations, plane waves, and the motion of a charge in the field of a wave (which is the principle upon which particle detection is based). A plane wave is a solution of the vacuum Maxwell equations which depends on only one of the Cartesian spatial coordinates. The monochromatic plane waves form a basis (in the sense of distributions, because they are not square-integrable) in which any solution of the vacuum Maxwell equations can be expanded. The chapter concludes by giving the conditions for the geometrical optics limit. It also establishes the connection between electromagnetic waves and the kinematic description of light discussed in Book 1.


Author(s):  
Mohammed Shalaby ◽  
Charles Champagne Cossette ◽  
Jerome Le Ny ◽  
James Richard Forbes

Sign in / Sign up

Export Citation Format

Share Document