The stability of a satellite with parametric excitation by the fluctuations of the geomagnetic field

Author(s):  
Peter S. Sagirow
Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3549
Author(s):  
Wanliang Zhao ◽  
Hao Yang ◽  
Fucheng Liu ◽  
Yan Su ◽  
Lijun Song

In this study, for energy compensation in the whole-angle control of Hemispherical Resonator Gyro (HRG), the dynamical equation of the resonator, which is excited by parametric excitation of the discrete electrode, is established, the stability conditions are analyzed, and the method of the double-frequency parametric excitation by the discrete electrode is derived. To obtain the optimal parametric excitation of the resonator, the total energy stability of the resonator is simulated for the evolution of the resonator vibration with different excitation parameters and the free precession of the standing wave by the parametric excitation. In addition, the whole-angle control of the HRG is designed, and the energy compensation of parametric excitation is proven by the experiments. The results of the experiments show that the energy compensation of the HRG in the whole-angle control can be realized using discrete electrodes with double-frequency parametric excitation, which significantly improves the dynamic performance of the whole-angle control compared to the force-to-rebalance.


Author(s):  
Artem Karev ◽  
Peter Hagedorn

Abstract Since the discovery of parametric anti-resonance, parametric excitation has also become more prominent for its stabilizing properties. While resonance and anti-resonance are mostly studied individually, there are systems where both effects appear simultaneously at each combination resonance frequency. With a steep transition between them and a high sensitivity of their relative positions, there is a need for a concurrent study of resonance and anti-resonance. The semi-analytical method of normal forms is used to derive approximate analytical expressions describing the magnitude of the stability impact as well as the precise locations of stabilized and destabilized areas. The results reveal that the separate appearance of resonance and anti-resonance is only a special case occurring for synchronous parametric excitation. In particular, in circulatory systems the simultaneous appearance is expected to be much more common.


Author(s):  
B J Gallacher ◽  
J S Burdess

This paper investigates the application of parametric excitation to a resonant microelectromechanical systems (MEMS) gyroscope. The modal equations of motion of an electrostatically actuated ring are derived and shown to be coupled via the electrostatic stiffness. Such electrostatic coupling between in-plane modes of vibration permits parametric instabilities that may be exploited in a novel excitation scheme. A multiple time scale perturbation method is used to analyse the response of the ring gyroscope to the combination parametric excitations with the principal objective of separating the drive and response frequencies of the ring gyroscope. As pairs of flexural modes of the perfect ring are degenerate, the combination excitation between distinct modes demand the ring to be analysed as a four degree of freedom system. Slight mis-tuning between the otherwise degenerate modes is incorporated in the perturbation analysis. The results of the perturbation analysis are subsequently used to determine the stability boundaries for a typical ring gyroscope when excited using a sum combination resonance between the flexural modes of order 2 and 5. In this case, the ratio of the drive and response frequencies is approximately 10:1. Drive and sense configurations that enable effective parametric excitation of a desired mode are investigated. Simulation of the oscillator scheme is achieved using MATLAB Simulink and this validates the perturbation analysis. Agreement between the models within 10 per cent is demonstrated.


Author(s):  
Ashu Sharma ◽  
S. C. Sinha

Parametrically excited linear systems with oscillatory coefficients have been generally modeled by Mathieu or Hill equations (periodic coefficients) because their stability and response can be determined by Floquét theory. However, in many cases, the parametric excitation is not periodic but consists of frequencies that are incommensurate, making them quasi-periodic. Unfortunately, there is no complete theory for linear dynamic systems with quasi-periodic coefficients. Motivated by this fact, in this work, an approximate approach has been proposed to determine the stability and response of quasi-periodic systems. It is suggested here that a quasi-periodic system may be replaced by a periodic system with an appropriate large principal period and thus making it suitable for an application of the Floquét theory. Based on this premise, a systematic approach has been developed and applied to three typical quasi-periodic systems. The approximate boundaries in stability charts obtained from the proposed method are very close to the exact boundaries of original quasi-periodic equations computed numerically using maximal Lyapunov exponents. Further, the frequency spectra of solutions generated near approximate and exact boundaries are found to be almost identical ensuring a high degree of accuracy. In addition, state transition matrices (STMs) are also computed symbolically in terms of system parameters using Chebyshev polynomials and Picard iteration method. Stability diagrams based on this approach are found to be in excellent agreement with those obtained from numerical methods. The coefficients of parametric excitation terms are not necessarily small in all cases.


2020 ◽  
Vol 30 (14) ◽  
pp. 2050203
Author(s):  
C. H. Miwadinou ◽  
A. V. Monwanou ◽  
L. A. Hinvi ◽  
V. Kamdoum Tamba ◽  
A. A. Koukpémèdji ◽  
...  

This paper addresses the issues on the dynamics of nonlinear damping gyros subjected to a quintic nonlinear parametric excitation. The fixed points and their stability are analyzed for the autonomous gyros equation. The number of fixed points of the system varies from one to six. The approximate equation of gyros is considered by expanding the nonlinear restoring force and parametric excitation for the study of the dynamics of gyros. Amplitude and frequency of possible resonances are found by using the multiple scales method. Also obtained are the principal parametric resonance and orders 4 and 6 subharmonic resonances. The stability conditions for each of these resonances are also obtained. Chaotic oscillations, multistability, hysteresis, and coexisting attractors are found using the bifurcation diagrams, the Lyapunov exponents, the phase portraits, the Poincaré section and the time histories. The effects of the damping parameter, the angular spin velocity and the parametric nonlinear excitation are analyzed. Results obtained by using the approximate gyros equation are compared to the dynamics obtained with the exact equation of gyros. The analytical investigations are complemented by numerical simulations.


Author(s):  
K M Harish ◽  
B J Gallacher ◽  
J S Burdess ◽  
J A Neasham

One of the major issues facing electrostatically actuated and sensed microelectromechanical systems (MEMS) sensors is electrical feed-through between the drive and the sense electrodes due to parasitic capacitances. This feed-through, in the case of a ‘tuned’ MEMS gyroscope, limits the sensor sensitivity. In the current paper, the first practical step towards demonstrating reduced feed-through using a combined harmonic forcing and parametric excitation scheme is demonstrated. The equation of motion for the primary mode of vibration of the electrostatically actuated MEMS ring gyroscope is shown to contain a stiffness modulating term which, when modulated at a frequency near twice the natural frequency of the mode, results in parametric resonance. A solution for the equation of motion is assumed, based on Floquet theory, and the method of harmonic balance is employed for analysis. Regions of stability and instability and the stability boundary demarcating the stable and unstable regions are determined. Frequency sweeps, centred on twice the measured resonant frequency of the primary mode, were performed at various values of voltage amplitudes of the parametric excitation and the parametric resonance was observed electrically at half the excitation frequency. This data were used to map the stability boundary of the parametric resonance. The theoretical and experimental stability boundaries are shown to demonstrate significant similarity.


Geophysics ◽  
1966 ◽  
Vol 31 (4) ◽  
pp. 797-802 ◽  
Author(s):  
E. J. Schwarz

Forty‐three oriented samples of massive sulphides, sulphide bearing rocks, quartz porphyries, and diabases were collected in the Quemont and Horne mines. The low‐field susceptibility for the sulphides on the average is somewhat higher than that for both types of wall rocks. The average intensity of the natural remanence of the sulphides is appreciably higher than that of the wall rocks. The ratio of the natural remanence and the induced magnetization (H=0.5 oersteds) is of the order of 1.2 and 0.5 for the sulphides and wall rocks, respectively. The directions of the natural remanence of nearly all samples of sulphide and wall rock are closely parallel to the geomagnetic field. Thus, sulphide bodies of the type studied tend to produce positive magnetic anomalies at the earth’s surface. The stability of the natural remanence of all samples was tested by partial demagnetization in alternating fields. The natural remanence contains a very large unstable component.


1986 ◽  
Vol 108 (3) ◽  
pp. 206-214 ◽  
Author(s):  
D. A. Streit ◽  
C. M. Krousgrill ◽  
A. K. Bajaj

The governing equations of motion for the compliant coordinates describing a flexible manipulator performing repetitive tasks contain parametric excitation terms. The stability of the zero solution to these equations is investigated using Floquet theory. Analytical and numerical results are presented for a two-degree-of-freedom model of a manipulator with one prismatic joint and one revolute joint.


Sign in / Sign up

Export Citation Format

Share Document