Nonlinear Oscillations of Nonlinear Damping Gyros: Resonances, Hysteresis and Multistability

2020 ◽  
Vol 30 (14) ◽  
pp. 2050203
Author(s):  
C. H. Miwadinou ◽  
A. V. Monwanou ◽  
L. A. Hinvi ◽  
V. Kamdoum Tamba ◽  
A. A. Koukpémèdji ◽  
...  

This paper addresses the issues on the dynamics of nonlinear damping gyros subjected to a quintic nonlinear parametric excitation. The fixed points and their stability are analyzed for the autonomous gyros equation. The number of fixed points of the system varies from one to six. The approximate equation of gyros is considered by expanding the nonlinear restoring force and parametric excitation for the study of the dynamics of gyros. Amplitude and frequency of possible resonances are found by using the multiple scales method. Also obtained are the principal parametric resonance and orders 4 and 6 subharmonic resonances. The stability conditions for each of these resonances are also obtained. Chaotic oscillations, multistability, hysteresis, and coexisting attractors are found using the bifurcation diagrams, the Lyapunov exponents, the phase portraits, the Poincaré section and the time histories. The effects of the damping parameter, the angular spin velocity and the parametric nonlinear excitation are analyzed. Results obtained by using the approximate gyros equation are compared to the dynamics obtained with the exact equation of gyros. The analytical investigations are complemented by numerical simulations.

2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Bamadev Sahoo ◽  
L. N. Panda ◽  
G. Pohit

The nonlinear vibration of a travelling beam subjected to principal parametric resonance in presence of internal resonance is investigated. The beam velocity is assumed to be comprised of a constant mean value along with a harmonically varying component. The stretching of neutral axis introduces geometric cubic nonlinearity in the equation of motion of the beam. The natural frequency of second mode is approximately three times that of first mode; a three-to-one internal resonance is possible. The method of multiple scales (MMS) is directly applied to the governing nonlinear equations and the associated boundary conditions. The nonlinear steady state response along with the stability and bifurcation of the beam is investigated. The system exhibits pitchfork, Hopf, and saddle node bifurcations under different control parameters. The dynamic solutions in the periodic, quasiperiodic, and chaotic forms are captured with the help of time history, phase portraits, and Poincare maps showing the influence of internal resonance.


2008 ◽  
Vol 15 (3-4) ◽  
pp. 355-368 ◽  
Author(s):  
Benjamın Vazquez-Gonzalez ◽  
Gerardo Silva-Navarro

In this work we study the frequency and dynamic response of a damped Duffing system attached to a parametrically excited pendulum vibration absorber. The multiple scales method is applied to get the autoparametric resonance conditions and the results are compared with a similar application of a pendulum absorber for a linear primary system. The approximate frequency analysis reveals that the nonlinear dynamics of the externally excited system are suppressed by the pendulum absorber and, under this condition, the primary Duffing system yields a time response almost equivalent to that obtained for a linear primary system, although the absorber frequency response is drastically modified and affected by the cubic stiffness, thus modifying the jumps defined by the fixed points. In the absorber frequency response can be appreciated a good absorption capability for certain ranges of nonlinear stiffness and the internal coupling is maintained by the existing damping between the pendulum and the primary system. Moreover, the stability of the coupled system is also affected by some extra fixed points introduced by the cubic stiffness, which is illustrated with several amplitude-force responses. Some numerical simulations of the approximate frequency responses and dynamic behavior are performed to show the steady-state and transient responses.


1954 ◽  
Vol 21 (4) ◽  
pp. 327-335
Author(s):  
T. K. Caughey

Abstract A study is made of the forced oscillations of a second-order system having a small cubic nonlinearity in the restoring force. It is shown that under suitable conditions ultraharmonic or subharmonic motion exists in addition to the harmonic motion which a linearized theory would predict. By studying the stability of such motions it is shown that at points on the amplitude frequency-response curves having vertical tangents, instability and consequently “jumps” occur. A study of the dependence of the motion on the initial conditions reveals that while ultra-harmonic and harmonic motions are rather insensitive to initial conditions, the existence of subharmonic motion can be achieved only for a restricted set of initial conditions.


Author(s):  
Chun-Hui He ◽  
Dan Tian ◽  
Galal M Moatimid ◽  
Hala F Salman ◽  
Marwa H Zekry

The current study examines the hybrid Rayleigh–Van der Pol–Duffing oscillator (HRVD) with a cubic–quintic nonlinear term and an external excited force. The Poincaré–Lindstedt technique is adapted to attain an approximate bounded solution. A comparison between the approximate solution with the fourth-order Runge–Kutta method (RK4) shows a good matching. In case of the autonomous system, the linearized stability approach is employed to realize the stability performance near fixed points. The phase portraits are plotted to visualize the behavior of HRVD around their fixed points. The multiple scales method, along with a nonlinear integrated positive position feedback (NIPPF) controller, is employed to minimize the vibrations of the excited force. Optimal conditions of the operation system and frequency response curves (FRCs) are discussed at different values of the controller and the system parameters. The system is scrutinized numerically and graphically before and after providing the controller at the primary resonance case. The MATLAB program is employed to simulate the effectiveness of different parameters and the controller on the system. The calculations showed that NIPPF is the best controller. The validations of time history and FRC of the analysis as well as the numerical results are satisfied by making a comparison among them.


1997 ◽  
Vol 119 (4A) ◽  
pp. 485-493 ◽  
Author(s):  
Ali H. Nayfeh ◽  
Char-Ming Chin ◽  
Jon Pratt

The role of perturbation methods and bifurcation theory in predicting the stability and complicated dynamics of machining is discussed using a nonlinear single-degree-of-freedom model that accounts for the regenerative effect, linear structural damping, quadratic and cubic nonlinear stiffness of the machine tool, and linear, quadratic, and cubic regenerative terms. Using the width of cut w as a bifurcation parameter, we find, using linear theory, that disturbances decay with time and hence chatter does not occur if w < wc and disturbances grow exponentially with time and hence chatter occurs if w > wc. In other words, as w increases past wc, a Hopf bifurcation occurs leading to the birth of a limit cycle. Using the method of multiple scales, we obtained the normal form of the Hopf bifurcation by including the effects of the quadratic and cubic nonlinearities. This normal form indicates that the bifurcation is supercritical; that is, local disturbances decay for w < wc and result in small limit cycles (periodic motions) for w > wc. Using a six-term harmonic-balance solution, we generated a bifurcation diagram describing the variation of the amplitude of the fundamental harmonic with the width of cut. Using a combination of Floquet theory and Hill’s determinant, we ascertained the stability of the periodic solutions. There are two cyclic-fold bifurcations, resulting in large-amplitude periodic solutions, hysteresis, jumps, and subcritical instability. As the width of cut w increases, the periodic solutions undergo a secondary Hopf bifurcation, leading to a two-period quasiperiodic motion (a two-torus). The periodic and quasiperiodic solutions are verified using numerical simulation. As w increases further, the torus doubles. Then, the doubled torus breaks down, resulting in a chaotic motion. The different attractors are identified by using phase portraits, Poincare´ sections, and power spectra. The results indicate the importance of including the nonlinear stiffness terms.


Author(s):  
M. S. Qaderi ◽  
S. A. A. Hosseini ◽  
M. Zamanian

In this paper, dynamic response of a rotating shaft with geometrical nonlinearity under parametric and external excitations is investigated. Resonances, bifurcations, and stability of the response are analyzed. External excitation is due to shaft unbalance and parametric excitation is due to periodic axial force. For this purpose, combination resonances of parametric excitation and primary resonance of external force are assumed. Indeed, simultaneous effect of nonlinearity, parametric, and external excitations are investigated using analytical method. By applying the method of multiple scales, four ordinary nonlinear differential equations are obtained, which govern the slow evolution of amplitude and phase of forward and backward modes. Eigenvalues of Jacobian matrix are checked to find the stability of solutions. Both periodic and quasi-periodic motion were observed in the range of study. The influence of various parameters on the response of the system is studied. A main contribution is that the parametric excitation in the presence of nonlinearity can be used to suppress the forward synchronous vibration. Indeed, in the presence of combination parametric excitation, the energy is transferred from forward whirling mode to backward one. This property can be applied in control of rotor unbalance vibrations.


2006 ◽  
Vol 16 (02) ◽  
pp. 325-347 ◽  
Author(s):  
WEI ZHANG ◽  
CHUNZHI SONG ◽  
MIN YE

In this paper, the nonlinear oscillations and chaotic dynamics of a parametrically excited simply supported symmetric cross-ply laminated composite rectangular thin plate are further investigated. Considering geometric nonlinearity and nonlinear damping, a two-degree-of-freedom nonlinear system under parametric excitation is obtained to give the nonlinear governing equations of motion for laminated composite plate subjected to in-plane load. The method of multiple scales is utilized to obtain the averaged equations that are numerically solved to obtain the steady bifurcation responses and analysis of stability for laminated composite thin plate. It is illustrated that under certain conditions laminated composite thin plate may have the multiple steady bifurcation solutions and jumping may occur. The chaotic motion of rectangular symmetric cross-ply laminated composite thin plate is also found by using numerical simulation. It is found that the occurrence of the periodic, quasi-periodic and chaotic motions for a parametrically excited four-edges simply supported rectangular symmetric cross-ply laminated composite thin plate depends on the parametric excitation.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
András L. Szabó ◽  
Bitan Roy

Abstract We compute the effects of strong Hubbardlike local electronic interactions on three-dimensional four-component massless Dirac fermions, which in a noninteracting system possess a microscopic global U(1) ⊗ SU(2) chiral symmetry. A concrete lattice realization of such chiral Dirac excitations is presented, and the role of electron-electron interactions is studied by performing a field theoretic renormalization group (RG) analysis, controlled by a small parameter ϵ with ϵ = d−1, about the lower-critical one spatial dimension. Besides the noninteracting Gaussian fixed point, the system supports four quantum critical and four bicritical points at nonvanishing interaction couplings ∼ ϵ. Even though the chiral symmetry is absent in the interacting model, it gets restored (either partially or fully) at various RG fixed points as emergent phenomena. A representative cut of the global phase diagram displays a confluence of scalar and pseudoscalar excitonic and superconducting (such as the s-wave and p-wave) mass ordered phases, manifesting restoration of (a) chiral U(1) symmetry between two excitonic masses for repulsive interactions and (b) pseudospin SU(2) symmetry between scalar or pseudoscalar excitonic and superconducting masses for attractive interactions. Finally, we perturbatively study the effects of weak rotational symmetry breaking on the stability of various RG fixed points.


The method of multiple scales is used to examine the slow modulation of a harmonic wave moving over the surface of a two dimensional channel. The flow is assumed inviscid and incompressible, but the basic flow takes the form of an arbitrary shear. The appropriate nonlinear Schrödinger equation is derived with coefficients that depend, in a complicated way, on the shear. It is shown that this equation agrees with previous work for the case of no shear; it also agrees in the long wave limit with the appropriate short wave limit of the Korteweg-de Vries equation, the shear being arbitrary. Finally, it is remarked that the stability of Stokes waves over any shear can be examined by using the results derived here.


Sign in / Sign up

Export Citation Format

Share Document