Stochastic production costing in generation planning: A large-scale mixed integer model

Author(s):  
Gilles Côté ◽  
M. A. Laughton
2013 ◽  
Vol 221 (3) ◽  
pp. 190-200 ◽  
Author(s):  
Jörg-Tobias Kuhn ◽  
Thomas Kiefer

Several techniques have been developed in recent years to generate optimal large-scale assessments (LSAs) of student achievement. These techniques often represent a blend of procedures from such diverse fields as experimental design, combinatorial optimization, particle physics, or neural networks. However, despite the theoretical advances in the field, there still exists a surprising scarcity of well-documented test designs in which all factors that have guided design decisions are explicitly and clearly communicated. This paper therefore has two goals. First, a brief summary of relevant key terms, as well as experimental designs and automated test assembly routines in LSA, is given. Second, conceptual and methodological steps in designing the assessment of the Austrian educational standards in mathematics are described in detail. The test design was generated using a two-step procedure, starting at the item block level and continuing at the item level. Initially, a partially balanced incomplete item block design was generated using simulated annealing, whereas in a second step, items were assigned to the item blocks using mixed-integer linear optimization in combination with a shadow-test approach.


PLoS ONE ◽  
2011 ◽  
Vol 6 (9) ◽  
pp. e24162 ◽  
Author(s):  
Joonhoon Kim ◽  
Jennifer L. Reed ◽  
Christos T. Maravelias

Author(s):  
Alexander Murray ◽  
Timm Faulwasser ◽  
Veit Hagenmeyer ◽  
Mario E. Villanueva ◽  
Boris Houska

AbstractThis paper presents a novel partially distributed outer approximation algorithm, named PaDOA, for solving a class of structured mixed integer convex programming problems to global optimality. The proposed scheme uses an iterative outer approximation method for coupled mixed integer optimization problems with separable convex objective functions, affine coupling constraints, and compact domain. PaDOA proceeds by alternating between solving large-scale structured mixed-integer linear programming problems and partially decoupled mixed-integer nonlinear programming subproblems that comprise much fewer integer variables. We establish conditions under which PaDOA converges to global minimizers after a finite number of iterations and verify these properties with an application to thermostatically controlled loads and to mixed-integer regression.


Author(s):  
Rui Qiu ◽  
Yongtu Liang

Abstract Currently, unmanned aerial vehicle (UAV) provides the possibility of comprehensive coverage and multi-dimensional visualization of pipeline monitoring. Encouraged by industry policy, research on UAV path planning in pipeline network inspection has emerged. The difficulties of this issue lie in strict operational requirements, variable flight missions, as well as unified optimization for UAV deployment and real-time path planning. Meanwhile, the intricate structure and large scale of the pipeline network further complicate this issue. At present, there is still room to improve the practicality and applicability of the mathematical model and solution strategy. Aiming at this problem, this paper proposes a novel two-stage optimization approach for UAV path planning in pipeline network inspection. The first stage is conventional pre-flight planning, where the requirement for optimality is higher than calculation time. Therefore, a mixed integer linear programming (MILP) model is established and solved by the commercial solver to obtain the optimal UAV number, take-off location and detailed flight path. The second stage is re-planning during the flight, taking into account frequent pipeline accidents (e.g. leaks and cracks). In this stage, the flight path must be timely rescheduled to identify specific hazardous locations. Thus, the requirement for calculation time is higher than optimality and the genetic algorithm is used for solution to satisfy the timeliness of decision-making. Finally, the proposed method is applied to the UAV inspection of a branched oil and gas transmission pipeline network with 36 nodes and the results are analyzed in detail in terms of computational performance. In the first stage, compared to manpower inspection, the total cost and time of UAV inspection is decreased by 54% and 56% respectively. In the second stage, it takes less than 1 minute to obtain a suboptimal solution, verifying the applicability and superiority of the method.


2021 ◽  
Vol 4 (4) ◽  
pp. 259-273
Author(s):  
Solomon T. Folorunso ◽  
T. Omosebi ◽  
D. A. Agbonika

The study compared the allocative efficiency and profitability of poultry-egg farmers in Jos metropolis of Plateau State, Nigeria, across different scales. To select 143 respondents, a two-stage sampling technique was used.   Using well-structured questionnaire and interview schedules, primary data on socioeconomic variables were collected. Collected data were analyzed using budgetary technique and stochastic production frontier model. Result of allocative efficiency showed the following: The mean allocative efficiency of the small, medium and large scales was 0.68, 0.12 and 0.11 respectively; the minimum allocative efficiency for small, medium and large scales was 0.30, 0.10 and 0.10 respectively. The maximum allocative efficiency was 0.59, 0.18 and 0.11 respectively for small, medium and large scale farmers. The profitability result indicated that egg production for small, medium and large-scale farms was profitable in the study area with N675, 671.79, N4, 897,236.09 and N16, 327,633.66 per farmer. The rate of return on investment per bird was found to be 19.51%, 31.21% and 83.13% respectively for small, medium and large farm sizes. For small, medium and large-scale farmers respectively, the capital turnover per bird was N 1.20, N1.31 and N1.83. Also, the profitability indices for the small, medium and large scales are N0.16, N0.24 and N0.45. The study recommends that; Farmers should be advised to increase production from small scale to large scale through policies that will promote such, special intervention is needed from the government at all levels through farmers’ cooperatives in the area of inputs subsidy, price efficiency of the farmers could


2020 ◽  
Author(s):  
Long Zhang ◽  
Guobin Zhang ◽  
Xiaofang Zhao ◽  
Yali Li ◽  
Chuntian Huang ◽  
...  

A coupling of wireless access via non-orthogonal multiple access and wireless backhaul via beamforming is a promising way for downlink user-centric ultra-dense networks (UDNs) to improve system performance. However, ultra-dense deployment of radio access points in macrocell and user-centric view of network design in UDNs raise important concerns about resource allocation and user association, among which notably is energy efficiency (EE) balance. To overcome this challenge, we develop a framework to investigate the resource allocation problem for energy efficient user association in such a scenario. The joint optimization framework aiming at the system EE maximization is formulated as a large-scale non-convex mixed-integer nonlinear programming problem, which is NP-hard to solve directly with lower complexity. Alternatively, taking advantages of sum-of-ratios decoupling and successive convex approximation methods, we transform the original problem into a series of convex optimization subproblems. Then we solve each subproblem through Lagrangian dual decomposition, and design an iterative algorithm in a distributed way that realizes the joint optimization of power allocation, sub-channel assignment, and user association simultaneously. Simulation results demonstrate the effectiveness and practicality of our proposed framework, which achieves the rapid convergence speed and ensures a beneficial improvement of system-wide EE.<br>


2018 ◽  
Vol 63 ◽  
pp. 955-986 ◽  
Author(s):  
Adrian Goldwaser ◽  
Andreas Schutt

We consider the torpedo scheduling problem in steel production, which is concerned with the transport of hot metal from a blast furnace to an oxygen converter. A schedule must satisfy, amongst other considerations, resource capacity constraints along the path and the locations traversed as well as the sulfur level of the hot metal. The goal is first to minimize the number of torpedo cars used during the planning horizon and second to minimize the time spent desulfurizing the hot metal. We propose an exact solution method based on Logic based Benders Decomposition using Mixed-Integer and Constraint Programming, which optimally solves and proves, for the first time, the optimality of all instances from the ACP Challenge 2016 within 10 minutes. In addition, we adapted our method to handle large-scale instances and instances with a more general rail network. This adaptation optimally solved all challenge instances within one minute and was able to solve instances of up to 100,000 hot metal pickups.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6610
Author(s):  
Raka Jovanovic ◽  
Islam Safak Bayram ◽  
Sertac Bayhan ◽  
Stefan Voß

Electrifying public bus transportation is a critical step in reaching net-zero goals. In this paper, the focus is on the problem of optimal scheduling of an electric bus (EB) fleet to cover a public transport timetable. The problem is modelled using a mixed integer program (MIP) in which the charging time of an EB is pertinent to the battery’s state-of-charge level. To be able to solve large problem instances corresponding to real-world applications of the model, a metaheuristic approach is investigated. To be more precise, a greedy randomized adaptive search procedure (GRASP) algorithm is developed and its performance is evaluated against optimal solutions acquired using the MIP. The GRASP algorithm is used for case studies on several public transport systems having various properties and sizes. The analysis focuses on the relation between EB ranges (battery capacity) and required charging rates (in kW) on the size of the fleet needed to cover a public transport timetable. The results of the conducted computational experiments indicate that an increase in infrastructure investment through high speed chargers can significantly decrease the size of the necessary fleets. The results also show that high speed chargers have a more significant impact than an increase in battery sizes of the EBs.


Sign in / Sign up

Export Citation Format

Share Document