scholarly journals Large-N SU(N) Yang-Mills theories with milder topological freezing

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Claudio Bonanno ◽  
Claudio Bonati ◽  
Massimo D’Elia

Abstract We simulate 4d SU(N) pure-gauge theories at large N using a parallel tempering scheme that combines simulations with open and periodic boundary conditions, implementing the algorithm originally proposed by Martin Hasenbusch for 2d CPN–1 models. That allows to dramatically suppress the topological freezing suffered from standard local algorithms, reducing the autocorrelation time of Q2 up to two orders of magnitude. Using this algorithm in combination with simulations at non-zero imaginary θ we are able to refine state-of-the-art results for the large-N behavior of the quartic coefficient of the θ-dependence of the vacuum energy b2, reaching an accuracy comparable with that of the large-N limit of the topological susceptibility.

2001 ◽  
Vol 16 (16) ◽  
pp. 2747-2769 ◽  
Author(s):  
EDWARD WITTEN

The correspondence between supergravity (and string theory) on AdS space and boundary conformal field theory relates the thermodynamics of [Formula: see text] super-Yang–Mills theory in four dimensions to the thermodynamics of Schwarzschild black holes in anti-de Sitter space. In this description, quantum phenomena such as the spontaneous breaking of the center of the gauge group, magnetic confinement and the mass gap are coded in classical geometry. The correspondence makes it manifest that the entropy of a very large AdS Schwarzschild black hole must scale "holographically" with the volume of its horizon. By similar methods, one can also make a speculative proposal for the description of large N gauge theories in four dimensions without supersymmetry.


2021 ◽  
Author(s):  
◽  
Jack Holligan

Yang-Mills theories based on the symplectic groups – denoted by Sp(2N) – are inter-esting for both theoretical and phenomenological reasons. Sp(2N) theories with two fundamental Dirac fermions give rise to pseudo-Nambu-Goldstone bosons which can be interpreted as a composite Higgs particle. This framework can describe the existing Higgs boson without the need for unnatural fine-tuning. This justifies a programme of wider investigations of Sp(2N) gauge theories aimed at understanding their general behaviour. In this work, we study the glueball mass spectrum for Sp(2N) Yang-Mills theories using the variational method applied to Monte-Carlo generated gauge config-urations. This is carried out both for finite N and in the limit N → ∞. The results are compared to existing results for SU(N) Yang-Mills theories, again, for finite- and large-N. Our glueball analysis is then used to investigate some conjectures related to the behaviour of the spectrum in Yang-Mills theories based on a generic non-Abeliangauge group G. We also find numerical evidence that Sp(2N) groups confine both for finite and large N. As well as studying the glueball spectrum, we examine the quenched-meson spectrum for fermions in the fundamental, antisymmetric and sym-metric representations for N = 2 and N = 3. This study enables us to provide a first account of how the related observables vary with N. The investigations presented in this work contribute to our understanding of the non-perturbative dynamics of Sp(2N) gauge theories in connection with Higgs compositeness and, more in general, with fun-damental open problems in non-Abelian gauge theories such as confinement and global symmetry breaking.


1991 ◽  
Vol 06 (31) ◽  
pp. 2893-2900
Author(s):  
A. R. LEVI

BRST is used to investigate the consistency of the quantum constraints for Yang–Mills theories based on twisted and untwisted SU (N) in a slab with periodic boundary conditions in one dimension.


2001 ◽  
Vol 16 (27) ◽  
pp. 1761-1773
Author(s):  
OLINDO CORRADINI ◽  
ALBERTO IGLESIAS ◽  
ZURAB KAKUSHADZE ◽  
PETER LANGFELDER

We discuss nonconformal nonsupersymmetric large-N gauge theories with vanishing vacuum energy density to all orders in perturbation theory. These gauge theories can be obtained via a field theory limit of type IIB D3-branes embedded in orbifolded space–times. We also discuss gravity in this setup.


2010 ◽  
Vol 25 (02n03) ◽  
pp. 470-489
Author(s):  
ADI ARMONI

We review the connection between QCD and supersymmetric theories. We focus on the non-perturbative large- N (planar) correspondence between one-flavor QCD and pure supersymmetric Yang-Mills theory ([Formula: see text]). We explain how non-perturbative quantities in QCD, such as the quark condensate, can be evaluated by using the corresponding non-perturbative results in supersymmetric gauge theories. The review consists of three parts. The first part is devoted to a review of pure [Formula: see text]. In the second part we introduce "orientifold planar equivalence". The third part is devoted to the implications of planar equivalence for QCD.


2004 ◽  
Vol 2004 (57) ◽  
pp. 3045-3056 ◽  
Author(s):  
Constantin Udrişte ◽  
Ana-Maria Teleman

We extend some results and concepts of single-time covariant Hamiltonian field theory to the new context of multitime covariant Hamiltonian theory. In this sense, we point out the role of the polysymplectic structureδ⊗J, we prove that the dual action is indefinite, we find the eigenvalues and the eigenfunctions of the operator(δ⊗J)(∂/∂t)with periodic boundary conditions, and we obtain interesting inequalities relating functionals created by the new context. As an important example for physics and differential geometry, we study the multitime Yang-Mills-Witten Hamiltonian, extending the Legendre transformation in a suitable way. Our original results are accompanied by well-known relations between Lagrangian and Hamiltonian, and by geometrical explanations regarding the Yang-Mills-Witten Lagrangian.


2015 ◽  
Vol 24 (06) ◽  
pp. 1530017 ◽  
Author(s):  
Marco Bochicchio

We review a number of old and new concepts in quantum gauge theories, some of which are well-established but not widely appreciated, some are most recent, that may have analogs in gauge formulations of quantum gravity, loop quantum gravity, and their topological versions, and may be of general interest. Such concepts involve noncommutative gauge theories and their relation to the large-N limit, loop equations and the change to the anti-selfdual (ASD) variables also known as Nicolai map, topological field theory (TFT) and its relation to localization and Morse–Smale–Floer homology, with an emphasis both on the mathematical aspects and the physical meaning. These concepts, assembled in a new way, enter a line of attack to the problem of the mass gap in large-NSU(N) Yang–Mills (YM), that is reviewed as well. Algebraic considerations furnish a measure of the mathematical complexity of a complete solution of large-NSU(N) YM: In the large-N limit of pure SU(N) YM the ambient algebra of Wilson loops is known to be a type II1 nonhyperfinite factor. Nevertheless, for the mass gap problem at the leading 1/N order, only the subalgebra of local gauge-invariant single-trace operators matters. The connected two-point correlators in this subalgebra must be an infinite sum of propagators of free massive fields, since the interaction is subleading in [Formula: see text], a vast simplification. It is an open problem, determined by the growth of the degeneracy of the spectrum, whether the aforementioned local subalgebra is in fact hyperfinite. Moreover, the sum of free propagators that occurs in the two-point correlators in the aforementioned local subalgebra must be asymptotic for large momentum to the result implied by the asymptotic freedom and the renormalization group: This fundamental constraint fixes asymptotically the residues of the poles of the propagators in terms of the mass spectrum and of the anomalous dimensions of the local operators. For the mass gap problem, in the search of a hyperfinite subalgebra containing the scalar sector of large-N YM, a major role is played by the existence of a TFT underlying the large-N limit of YM, with twisted boundary conditions on a torus or, which is the same by Morita duality, on a noncommutative torus. The TFT is trivial at the leading large-N order and localized on a set of critical points by means of a quantum version of Morse–Smale–Floer homology, that involves loop equations in the ASD variables. A hyperfinite sector arises by fluctuations around the trivial TFT, in which the joint spectrum of scalar and pseudoscalar glueballs is linear in the square of the masses [Formula: see text] with degeneracy k = 1, 2,…, and the two-point correlator satisfies the aforementioned fundamental constraint arising by the asymptotic freedom and the renormalization group.


Author(s):  
Christoph Saulder ◽  
Owain Snaith ◽  
Changbom Park ◽  
Clotilde Laigle

Abstract We searched for isolated dark matter deprived galaxies within several state-of-the-art hydrodynamical simulations: Illustris, IllustrisTNG, EAGLE, and Horizon-AGN and found a handful of promising objects in all except Horizon-AGN. While our initial goal was to study their properties and evolution, we quickly noticed that all of them were located at the edge of their respective simulation boxes. After carefully investigating these objects using the full particle data, we concluded that they are not merely caused by a problem with the algorithm identifying bound structures. We provide strong evidence that these oddballs were created from regular galaxies that get torn apart due to unphysical processes when crossing the edge of the simulation box. We show that these objects are smoking guns indicating an issue with the implementation of the periodic boundary conditions of the particle data in Illustris, IllustrisTNG, and EAGLE, which was eventually traced down to be a minor bug occurring for a very rare set of conditions.


Sign in / Sign up

Export Citation Format

Share Document