scholarly journals Probing new U(1) gauge symmetries via exotic Z → Z′γ decays

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Lisa Michaels ◽  
Felix Yu

Abstract New U(1) gauge theories involving Standard Model (SM) fermions typically require additional electroweak fermions for anomaly cancellation. We study the non-decoupling properties of these new fermions, called anomalons, in the Z − Z′ − γ vertex function, reviewing the connection between the full model and the effective Wess-Zumino operator. We calculate the exotic Z → Z′γ decay width in U(1)B−L and U(1)B models, where B and L denote the SM baryon and lepton number symmetries. For U(1)B−L gauge symmetry, each generation of SM fermions is anomaly free and the exotic Z →$$ {Z}_{BL}^{\prime}\gamma $$ Z BL ′ γ decay width is entirely induced by intragenerational mass splittings. In contrast, for U(1)B gauge symmetry, the existence of two distinct sources of chiral symmetry breaking enables a heavy, anomaly-free set of fermions to have an irreducible contribution to the Z →$$ {Z}_B^{\prime}\gamma $$ Z B ′ γ decay width. We show that the current LEP limits on the exotic Z →$$ {Z}_B^{\prime}\gamma $$ Z B ′ γ decay are weaker than previously estimated, and low-mass $$ {Z}_B^{\prime } $$ Z B ′ dijet resonance searches are currently more constraining. We present a summary of the current collider bounds on U(1)B and a projection for a TeraZ factory on the Z →$$ {Z}_B^{\prime}\gamma $$ Z B ′ γ exotic decay, and emphasize how the Z → Z′γ decay is emblematic of new anomalous U(1) gauge symmetries.

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Thomas T. Dumitrescu ◽  
Temple He ◽  
Prahar Mitra ◽  
Andrew Strominger

Abstract We establish the existence of an infinite-dimensional fermionic symmetry in four-dimensional supersymmetric gauge theories by analyzing semiclassical photino dynamics in abelian $$ \mathcal{N} $$ N = 1 theories with charged matter. The symmetry is parametrized by a spinor-valued function on an asymptotic S2 at null infinity. It is not manifest at the level of the Lagrangian, but acts non-trivially on physical states, and its Ward identity is the soft photino theorem. The infinite-dimensional fermionic symmetry resides in the same $$ \mathcal{N} $$ N = 1 supermultiplet as the physically non-trivial large gauge symmetries associated with the soft photon theorem.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Joe Davighi ◽  
Nakarin Lohitsiri

Abstract In this note we review the role of homotopy groups in determining non-perturbative (henceforth ‘global’) gauge anomalies, in light of recent progress understanding global anomalies using bordism. We explain why non-vanishing of πd(G) is neither a necessary nor a sufficient condition for there being a possible global anomaly in a d-dimensional chiral gauge theory with gauge group G. To showcase the failure of sufficiency, we revisit ‘global anomalies’ that have been previously studied in 6d gauge theories with G = SU(2), SU(3), or G2. Even though π6(G) ≠ 0, the bordism groups $$ {\Omega}_7^{\mathrm{Spin}}(BG) $$ Ω 7 Spin BG vanish in all three cases, implying there are no global anomalies. In the case of G = SU(2) we carefully scrutinize the role of homotopy, and explain why any 7-dimensional mapping torus must be trivial from the bordism perspective. In all these 6d examples, the conditions previously thought to be necessary for global anomaly cancellation are in fact necessary conditions for the local anomalies to vanish.


1989 ◽  
Vol 04 (14) ◽  
pp. 1343-1353 ◽  
Author(s):  
T.E. CLARK ◽  
C.-H. LEE ◽  
S.T. LOVE

The supersymmetric extensions of anti-symmetric tensor gauge theories and their associated tensor gauge symmetry transformations are constructed. The classical equivalence between such supersymmetric tensor gauge theories and supersymmetric non-linear sigma models is established. The global symmetry of the supersymmetric tensor gauge theory is gauged and the locally invariant action is obtained. The supercurrent on the Kähler manifold is found in terms of the supersymmetric tensor gauge field.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Joonho Kim ◽  
Seok Kim ◽  
Kimyeong Lee

Abstract We explore 6d (1, 0) superconformal field theories with SU(3) and SU(2) gauge symmetries which cascade after Higgsing to the E-string theory on a single M5 near an E8 wall. Specifically, we study the 2d $$ \mathcal{N} $$ N = (0, 4) gauge theories which describe self-dual strings of these 6d theories. The self-dual strings can be also viewed as instanton string solitons of 6d Yang-Mills theories. We find the 2d anomaly-free gauge theories for self-dual strings, amending the naive ADHM gauge theories which are anomalous, and calculate their elliptic genera. While these 2d theories respect the flavor symmetry of each 6d SCFT only partially, their elliptic genera manifest the symmetry fully as these functions as BPS index are invariant in strongly coupled IR limit. Our consistent 2d (0, 4) gauge theories also provide new insights on the non-linear sigma models for the instanton strings, providing novel UV completions of the small instanton singularities. Finally, we construct new 2d quiver gauge theories for the self-dual strings in 6d E-string theory for multiple M5-branes probing the E8 wall, and find their fully refined elliptic genera.


2012 ◽  
Vol 2012 ◽  
pp. 1-31 ◽  
Author(s):  
A. Lionetto ◽  
A. Racioppi

We study a supersymmetry breaking mechanism in the context of a minimal anomalous extension of the MSSM. The anomaly cancellation mechanism is achieved through suitable counterterms in the effective action, that is, the Green-Schwarz terms. We assume that the standard MSSM superpotential is perturbatively realized; that is, all terms allowed by gauge symmetries except for the μ-term which has a nonperturbative origin. The presence of this term is expected in many intersecting D-brane models which can be considered as the ultraviolet completion of our model. We show how soft supersymmetry breaking terms arise in this framework, and we study the effect of some phenomenological constraints on this scenario.


2017 ◽  
Vol 16 (01) ◽  
pp. 1750009
Author(s):  
A. Schelle

The interplay between spontaneously broken gauge symmetries and Bose–Einstein condensation has long been controversially discussed in science, since the equations of motion are invariant under phase transformations. Within the present model, it is illustrated that spontaneous symmetry breaking appears as a non-local process in position space, but within disjoint subspaces of the underlying Hilbert space. Numerical simulations show that it is the symmetry of the relative phase distribution between condensate and non-condensate quantum fields which is spontaneously broken when passing the critical temperature for Bose–Einstein condensation. Since the total number of gas particles remains constant over time, the global U(1)-gauge symmetry of the system is preserved.


2007 ◽  
Vol 656 (1-3) ◽  
pp. 145-151 ◽  
Author(s):  
M. Gomes ◽  
T. Mariz ◽  
J.R. Nascimento ◽  
A.Yu. Petrov ◽  
A.J. da Silva ◽  
...  

2005 ◽  
Vol 20 (25) ◽  
pp. 1933-1938 ◽  
Author(s):  
R. CASANA ◽  
B. M. PIMENTEL

We study the regularization ambiguities in an exact renormalized (1 +1)-dimensional field theory. We show a relation between the regularization ambiguities and the coupling parameters of the theory as well as their role in the implementation of a local gauge symmetry at quantum level.


Sign in / Sign up

Export Citation Format

Share Document