scholarly journals Fiducial polarization observables in hadronic WZ production: a next-to-leading order QCD+EW study

2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Julien Baglio ◽  
Le Duc Ninh
2020 ◽  
Vol 30 (1) ◽  
pp. 35 ◽  
Author(s):  
Julien Baglio ◽  
Duc Ninh Le

We present a study of the polarization observables of the $W$ and $Z$ bosons in the process \(p p \to W^\pm Z\to e^\pm \nu_e \mu^+\mu^-\) at the 13 TeV Large Hadron Collider. The calculation is performed at next-to-leading order, including the full QCD corrections as well as the electroweak corrections, the latter being calculated in the double-pole approximation. The results are presented in the helicity coordinate system adopted by ATLAS and for different inclusive cuts on the di-muon invariant mass. We define left-right charge asymmetries related to the polarization fractions between the \(W^+ Z\) and \(W^- Z\) channels and we find that these asymmetries are large and sensitive to higher-order effects. Similar findings are also presented for charge asymmetries related to a P-even angular coefficient.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Umberto D’Alesio ◽  
Francesco Murgia ◽  
Marco Zaccheddu

Abstract We present the complete leading-order results for the azimuthal dependences and polarization observables in e+e−→ h1h2 + X processes, where the two hadrons are produced almost back-to-back, within a transverse momentum dependent (TMD) factorization scheme. We consider spinless (or unpolarized) and spin-1/2 hadron production and give the full set of the corresponding quark and gluon TMD fragmentation functions (TMD-FFs). By adopting the helicity formalism, which allows for a more direct probabilistic interpretation, single- and double-polarization cases are discussed in detail. Simplified expressions, useful for phenomenological analyses, are obtained by assuming a factorized Gaussian-like dependence on intrinsic transverse momenta for the TMD-FFs.


Author(s):  
David J. Steigmann

This chapter develops two-dimensional membrane theory as a leading order small-thickness approximation to the three-dimensional theory for thin sheets. Applications to axisymmetric equilibria are developed in detail, and applied to describe the phenomenon of bulge propagation in cylinders.


Author(s):  
Fábio Köpp Nóbrega ◽  
Luiz Fernando Mackedanz

Resumo Neste artigo, vamos estudar alguns conceitos fundamentais em física de partículas através do estudo detalhado de um processo específico da Eletrodinâmica Quântica (QED): o espalhamento Bhabha em ordem dominante (Leading Order - LO). Este ocorre na interação entre um elétron e sua antipartícula, o pósitron, sendo um dos processos básicos da QED. Nossa escolha em trabalhar este processo deve-se a riqueza de detalhes proporcionada pelas duas possibilidades (canais) de interação, que servem para ilustrar o cálculo da interferência entre as possibilidades. Além disso, esse processo é utilizado para determinar a luminosidade de um determinado colisor, o que garante maior precisão nas medidas de outras grandezas relevantes para a análise das interações entre partículas. Finalmente, comparamos a predição da QED com os resultados do experimento DESY-PETRA-TASSO.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Paul Frederik Depta ◽  
Andreas Halsch ◽  
Janine Hütig ◽  
Sebastian Mendizabal ◽  
Owe Philipsen

Abstract Thermal leptogenesis, in the framework of the standard model with three additional heavy Majorana neutrinos, provides an attractive scenario to explain the observed baryon asymmetry in the universe. It is based on the out-of-equilibrium decay of Majorana neutrinos in a thermal bath of standard model particles, which in a fully quantum field theoretical formalism is obtained by solving Kadanoff-Baym equations. So far, the leading two-loop contributions from leptons and Higgs particles are included, but not yet gauge corrections. These enter at three-loop level but, in certain kinematical regimes, require a resummation to infinite loop order for a result to leading order in the gauge coupling. In this work, we apply such a resummation to the calculation of the lepton number density. The full result for the simplest “vanilla leptogenesis” scenario is by $$ \mathcal{O} $$ O (1) increased compared to that of quantum Boltzmann equations, and for the first time permits an estimate of all theoretical uncertainties. This step completes the quantum theory of leptogenesis and forms the basis for quantitative evaluations, as well as extensions to other scenarios.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Fabian Müller ◽  
Akaki Rusetsky

Abstract Using non-relativistic effective field theory, we derive a three-particle analog of the Lellouch-Lüscher formula at the leading order. This formula relates the three-particle decay amplitudes in a finite volume with their infinite-volume counterparts and, hence, can be used to study the three-particle decays on the lattice. The generalization of the approach to higher orders is briefly discussed.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
M. Boglione ◽  
A. Simonelli

Abstract Factorizing the cross section for single hadron production in e+e− annihilations is a highly non trivial task when the transverse momentum of the outgoing hadron with respect to the thrust axis is taken into account. We work in a scheme that allows to factorize the e+e−→ H X cross section as a convolution of a calculable hard coefficient and a Transverse Momentum Dependent (TMD) fragmentation function. The result, differential in zh, PT and thrust, will be given to all orders in perturbation theory and explicitly computed to Next to Leading Order (NLO) and Next to Leading Log (NLL) accuracy. The predictions obtained from our computation, applying the simplest and most natural ansatz to model the non-perturbative part of the TMD, are in exceptional agreement with the experimental measurements of the BELLE Collaboration. The factorization scheme we propose relates the TMD parton densities defined in 1-hadron and 2-hadron processes, restoring the possi- bility to perform global phenomenological studies of TMD physics including experimental data from semi-inclusive deep inelastic scattering, Drell-Yan processes, e+e−→ H1H2X and e+e−→ H X annihilations.


Sign in / Sign up

Export Citation Format

Share Document