scholarly journals SU(2/1) superchiral self-duality: a new quantum, algebraic and geometric paradigm to describe the electroweak interactions

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jean Thierry-Mieg ◽  
Peter Jarvis

Abstract We propose an extension of the Yang-Mills paradigm from Lie algebras to internal chiral superalgebras. We replace the Lie algebra-valued connection one-form A, by a superalgebra-valued polyform $$ \tilde{A} $$ A ˜ mixing exterior-forms of all degrees and satisfying the chiral self-duality condition $$ \tilde{A} =^{\ast }{\tilde{A}}_{\chi } $$ A ˜ = ∗ A ˜ χ , where χ denotes the superalgebra grading operator. This superconnection contains Yang-Mills vectors valued in the even Lie subalgebra, together with scalars and self-dual tensors valued in the odd module, all coupling only to the charge parity CP-positive Fermions. The Fermion quantum loops then induce the usual Yang-Mills-scalar Lagrangian, the self-dual Avdeev-Chizhov propagator of the tensors, plus a new vector-scalar-tensor vertex and several quartic terms which match the geometric definition of the supercurvature. Applied to the SU(2/1) Lie-Kac simple superalgebra, which naturally classifies all the elementary particles, the resulting quantum field theory is anomaly-free and the interactions are governed by the super-Killing metric and by the structure constants of the superalgebra.

2004 ◽  
Vol 13 (08) ◽  
pp. 999-1006
Author(s):  
LUCIAN M. IONESCU

Topological quantum field theories (TQFTs) represent the structure present in cobordism categories. As an example, we review the correspondence between Frobenius algebras and (1+1)TQFTs. It is a corollary of the self-duality of the cobordism category, which is a rigid monoidal category generated by a Frobenius object (the circle). A self-dual definition of a Frobenius object without the use of a prefered dual is considered. The issue of duality as part of the definition of a TQFT is addressed. Note that duality is preserved by monoidal functors. Hermitian structures are modeled as a conjugation compatible with duality. It is the structure cobordism categories posses. A definition of generalized cobordism categories is proposed.


1998 ◽  
Vol 13 (14) ◽  
pp. 1115-1132 ◽  
Author(s):  
LAURENT BAULIEU ◽  
CÉLINE LAROCHE

We classify possible "self-duality" equations for p-form gauge fields in space–time dimension up to D=16, generalizing the pioneering work of Corrigan et al. (1982) on Yang–Mills fields (p=1) in 4<D≤8. We impose two crucial requirements. First, there should exist a 2(p+1)-form T-invariant under a subgroup H of SO D. Second, the representation for the SO D curvature of the gauge field must decompose under H in a relevant way. When these criteria are fulfilled, the "self-duality" equations can be candidates of gauge functions for SO D-covariant and H-invariant topological quantum field theories. Intriguing possibilities occur for D≥10 for various p-form gauge fields.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tejinder P. Singh

AbstractWe have recently proposed a Lagrangian in trace dynamics at the Planck scale, for unification of gravitation, Yang–Mills fields, and fermions. Dynamical variables are described by odd-grade (fermionic) and even-grade (bosonic) Grassmann matrices. Evolution takes place in Connes time. At energies much lower than Planck scale, trace dynamics reduces to quantum field theory. In the present paper, we explain that the correct understanding of spin requires us to formulate the theory in 8-D octonionic space. The automorphisms of the octonion algebra, which belong to the smallest exceptional Lie group G2, replace space-time diffeomorphisms and internal gauge transformations, bringing them under a common unified fold. Building on earlier work by other researchers on division algebras, we propose the Lorentz-weak unification at the Planck scale, the symmetry group being the stabiliser group of the quaternions inside the octonions. This is one of the two maximal sub-groups of G2, the other one being SU(3), the element preserver group of octonions. This latter group, coupled with U(1)em, describes the electrocolour symmetry, as shown earlier by Furey. We predict a new massless spin one boson (the ‘Lorentz’ boson) which should be looked for in experiments. Our Lagrangian correctly describes three fermion generations, through three copies of the group G2, embedded in the exceptional Lie group F4. This is the unification group for the four fundamental interactions, and it also happens to be the automorphism group of the exceptional Jordan algebra. Gravitation is shown to be an emergent classical phenomenon. Although at the Planck scale, there is present a quantised version of the Lorentz symmetry, mediated by the Lorentz boson, we argue that at sub-Planck scales, the self-adjoint part of the octonionic trace dynamics bears a relationship with string theory in 11 dimensions.


2018 ◽  
Vol 30 (05) ◽  
pp. 1850013 ◽  
Author(s):  
Markus Holzmann ◽  
Thomas Ourmières-Bonafos ◽  
Konstantin Pankrashkin

This paper deals with the massive three-dimensional Dirac operator coupled with a Lorentz scalar shell interaction supported on a compact smooth surface. The rigorous definition of the operator involves suitable transmission conditions along the surface. After showing the self-adjointness of the resulting operator, we switch to the investigation of its spectral properties, in particular, to the existence and non-existence of eigenvalues. In the case of an attractive coupling, we study the eigenvalue asymptotics as the mass becomes large and show that the behavior of the individual eigenvalues and their total number are governed by an effective Schrödinger operator on the boundary with an external Yang–Mills potential and a curvature-induced potential.


We present a self-contained account of the ideas of R. Penrose connecting four-dimensional Riemannian geometry with three-dimensional complex analysis. In particular we apply this to the self-dual Yang-Mills equations in Euclidean 4-space and compute the number of moduli for any compact gauge group. Results previously announced are treated with full detail and extended in a number of directions.


1994 ◽  
Vol 09 (17) ◽  
pp. 3077-3101 ◽  
Author(s):  
HITOSHI NISHINO

We present the canonical set of superspace constraints for self-dual supergravity, a “self-dual” tensor multiplet and a self-dual Yang-Mills multiplet with N=1 supersymmetry in the space-time with signature (+,+, −, −). For this set of constraints, the consistency of the self-duality conditions on these multiplets with supersymmetry is manifest. The energy-momentum tensors of all the self-dual “matter” multiplets vanish, to be consistent with the self-duality of the Riemann tensor. In particular, the special significance of the “self-dual” tensor multiplet is noted. This result fills the gap left over in our previous series of papers, with respect to the consistent couplings among the self-dual matter multiplets. We also couple these nontrivial backgrounds to a Green-Schwarz superstring σ model, under the requirement of invariance under fermionic (kappa) symmetry. The finiteness of the self-dual supergravity is discussed, based on its “off-shell” structure. A set of exact solutions for the “self-dual” tensor and self-dual Yang-Mills multiplets for the gauge group SL(2) on a self-dual gravitational instanton background is given, and its consistency with the Green-Schwarz string σ model is demonstrated.


2003 ◽  
Vol 18 (26) ◽  
pp. 4889-4931 ◽  
Author(s):  
MATTHIAS IHL ◽  
SEBASTIAN UHLMANN

The Seiberg–Witten limit of fermionic N = 2 string theory with nonvanishing B-field is governed by noncommutative self-dual Yang–Mills theory (ncSDYM) in 2+2 dimensions. Conversely, the self-duality equations are contained in the equation of motion of N = 2 string field theory in a B-field background. Therefore finding solutions to noncommutative self-dual Yang–Mills theory on ℝ2,2 might help to improve our understanding of nonperturbative properties of string (field) theory. In this paper, we construct nonlinear soliton-like and multi-plane wave solutions of the ncSDYM equations corresponding to certain D-brane configurations by employing a solution generating technique, an extension of the so-called dressing approach. The underlying Lax pair is discussed in two different gauges, the unitary and the Hermitian gauge. Several examples and applications for both situations are considered, including Abelian solutions constructed from GMS-like projectors, noncommutative U(2) soliton-like configurations and interacting plane waves. We display a correspondence to earlier work on string field theory and argue that the solutions found here can serve as a guideline in the search for nonperturbative solutions of nonpolynomial string field theory.


1978 ◽  
Vol 73 (4-5) ◽  
pp. 468-470 ◽  
Author(s):  
G. Girardi ◽  
C. Meyers ◽  
M. de Roo
Keyword(s):  
The Self ◽  

Author(s):  
TEJINDER P. SINGH

There must exist a reformulation of quantum field theory which does not refer to classical time. We propose a pre-quantum, pre-spacetime theory, which is a matrix-valued Lagrangian dynamics for gravity, Yang-Mills fields, and fermions. The definition of spin in this theory leads us to an eight dimensional octonionic space-time. The algebra of the octonions reveals the standard model; model parameters are determined by roots of the cubic characteristic equation of the exceptional Jordan algebra. We derive the asymptotic low energy value 1/137 of the fine structure constant, and predict the existence of universally interacting spin one Lorentz bosons, which replace the hypothesised graviton. Gravity is not to be quantized, but is an emergent four-dimensional classical phenomenon, precipitated by the spontaneous localisation of highly entangled fermions.


Sign in / Sign up

Export Citation Format

Share Document