scholarly journals Flavoured warped axion

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Quentin Bonnefoy ◽  
Peter Cox ◽  
Emilian Dudas ◽  
Tony Gherghetta ◽  
Minh D. Nguyen

Abstract We consider a 5D extension of the DFSZ axion model that addresses both the axion quality and fermion mass hierarchy problems, and predicts flavour-dependent, off-diagonal axion-fermion couplings. The axion is part of a 5D complex scalar field charged under a U(1)PQ symmetry that is spontaneously broken in the bulk, and is insensitive to explicit PQ breaking on the UV boundary. Bulk Standard Model fermions interact with two Higgs doublets that can be localized on the UV boundary or propagate in the bulk to explain the fermion masses and mixings. When the Higgs doublets are localized on the UV boundary, they induce flavour diagonal couplings between the fermions and the axion. However, when the Higgs doublets propagate in the bulk, the overlap of the axion and fermion profiles generates flavour off-diagonal couplings. The effective scale of these off-diagonal couplings in both the quark and lepton sectors can be as small as 1011 GeV, and therefore will be probed in future precision flavour experiments.

2022 ◽  
Vol 258 ◽  
pp. 06003
Author(s):  
Giancarlo Rossi

In this talk we describe examples of renormalizable strongly interacting field theories where chiral symmetry, broken at the UV cutoff by the presence of some irrelevant d > 4 operators in the fundamental Lagrangian, is recovered at low energy owing to the tuning of certain Lagrangian parameters. The interference of UV effects with IR features coming from the spontaneous breaking of the recovered chiral symmetry yields non perturbatively generated elementary fermion masses parametrically expressed by formulae of the kind mq ~ Cq(α)ΛRGI with α the gauge coupling constant and ΛRGI the RGI scale of the theory. Upon introducing EW interactions, this mechanism can be extended to give mass to EW bosons and leptons and can thus be used as an alternative to the Higgs scenario. In order to give the top quark and the weak gauge bosons a mass of the phenomenologically correct order of magnitude, the model must necessarily include (yet unobserved) super-strongly interacting massive fermions endowed, besides ordinary Standard Model interactions, with super-strong interactions with a RGI scale, ΛT ΛQCD in the few TeV range. Though limited in its scope (here we ignore hypercharge and leptons and discuss only the case of one family neglecting weak isospin splitting), the model opens the way to a solution of the naturalness problem and an understanding of the fermion mass hierarchy.


2010 ◽  
Vol 25 (19) ◽  
pp. 1613-1623 ◽  
Author(s):  
KUNIO KANETA ◽  
YOSHIHARU KAWAMURA

We study the origin of fermion mass hierarchy and flavor mixing in a Lifshitz type extension of the standard model including an extra scalar field. We show that the hierarchical structure can originate from renormalizable interactions. In contrast to the ordinary Froggatt–Nielsen mechanism, the higher the dimension of associated operators, the heavier the fermion masses. Tiny masses for left-handed neutrinos are obtained without introducing right-handed neutrinos.


2021 ◽  
Vol 36 (27) ◽  
pp. 2150196
Author(s):  
Ying Zhang

To address fermion mass hierarchy and flavor mixings in the quark and lepton sectors, a minimal flavor structure without any redundant parameters beyond phenomenological observables is proposed via decomposition of the Standard Model Yukawa mass matrix into a bi-unitary form. After reviewing the roles and parameterization of the factorized matrix [Formula: see text] and [Formula: see text] in fermion masses and mixings, we generalize the mechanism to up- and down-type fermions to unify them into a universal quark/lepton Yukawa interaction. In the same way, a unified form of the description of the quark and lepton Yukawa interactions is also proposed, which shows a similar picture as the unification of gauge interactions.


1999 ◽  
Vol 14 (14) ◽  
pp. 2173-2203 ◽  
Author(s):  
HONG-MO CHAN ◽  
SHEUNG TSUN TSOU

Based on a non-Abelian generalization of electric–magnetic duality, the Dualized Standard Model (DSM) suggests a natural explanation for exactly three generations of fermions as the "dual colour" [Formula: see text] symmetry broken in a particular manner. The resulting scheme then offers on the one hand a fermion mass hierarchy and a perturbative method for calculating the mass and mixing parameters of the Standard Model fermions, and on the other hand testable predictions for new phenomena ranging from rare meson decays to ultra-high energy cosmic rays. Calculations to one-loop order gives, at the cost of adjusting only three real parameters, values for the following quantities all (except one) in very good agreement with experiment: the quark CKM matrix elements ‖Vrs‖, the lepton CKM matrix elements ‖Urs‖, and the second generation masses mc, ms, mμ. This means, in particular, that it gives near maximal mixing Uμ3 between νμ and ντ as observed by SuperKamiokande, Kamiokande and Soudan, while keeping small the corresponding quark angles Vcb, Vts. In addition, the scheme gives (i) rough order-of-magnitude estimates for the masses of the lowest generation, (ii) predictions for low energy FCNC effects such as KL→ eμ, and (iii) a possible explanation for the long-standing puzzle of air showers beyond the GZK cut-off. All these together, however, still represent but a portion of the possible physical consequences derivable from the DSM scheme, the majority of which are yet to be explored.


1992 ◽  
Vol 169 (4) ◽  
pp. 308-312 ◽  
Author(s):  
I.M. Khalatnikov ◽  
A. Mezhlumian

2011 ◽  
Author(s):  
F. Briscese ◽  
Luis Arturo Ureña-López ◽  
Hugo Aurelio Morales-Técotl ◽  
Román Linares-Romero ◽  
Elí Santos-Rodríguez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document