scholarly journals A road towards a beyond the Standard Model model

2022 ◽  
Vol 258 ◽  
pp. 06003
Author(s):  
Giancarlo Rossi

In this talk we describe examples of renormalizable strongly interacting field theories where chiral symmetry, broken at the UV cutoff by the presence of some irrelevant d > 4 operators in the fundamental Lagrangian, is recovered at low energy owing to the tuning of certain Lagrangian parameters. The interference of UV effects with IR features coming from the spontaneous breaking of the recovered chiral symmetry yields non perturbatively generated elementary fermion masses parametrically expressed by formulae of the kind mq ~ Cq(α)ΛRGI with α the gauge coupling constant and ΛRGI the RGI scale of the theory. Upon introducing EW interactions, this mechanism can be extended to give mass to EW bosons and leptons and can thus be used as an alternative to the Higgs scenario. In order to give the top quark and the weak gauge bosons a mass of the phenomenologically correct order of magnitude, the model must necessarily include (yet unobserved) super-strongly interacting massive fermions endowed, besides ordinary Standard Model interactions, with super-strong interactions with a RGI scale, ΛT ΛQCD in the few TeV range. Though limited in its scope (here we ignore hypercharge and leptons and discuss only the case of one family neglecting weak isospin splitting), the model opens the way to a solution of the naturalness problem and an understanding of the fermion mass hierarchy.

2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Nobuhito Maru ◽  
Yoshiki Yatagai

AbstractGrand gauge–Higgs unification of five dimensional SU(6) gauge theory on an orbifold $$S^1/Z_2$$ S 1 / Z 2 with localized gauge kinetic terms is discussed. The Standard model (SM) fermions on one of the boundaries and some massive bulk fermions coupling to the SM fermions on the boundary are introduced, so that they respect an SU(5) symmetry structure. The SM fermion masses including top quark are reproduced by mild tuning the bulk masses and parameters of the localized gauge kinetic terms. Gauge coupling universality is not guaranteed by the presence of the localized gauge kinetic terms and it severely constrains the Higgs vacuum expectation value. Higgs potential analysis shows that the electroweak symmetry breaking occurs by introducing additional bulk fermions in simplified representations. The localized gauge kinetic terms enhance the magnitude of the compactification scale, which helps Higgs boson mass large. Indeed the observed Higgs boson mass 125 GeV is obtained.


Author(s):  
Nobuhito Maru ◽  
Yoshiki Yatagai

Abstract Grand gauge-Higgs unification of 5D $SU(6)$ gauge theory on an orbifold $S^1/Z_2$ is discussed. The Standard Model (SM) fermions are introduced on one of the boundaries and some massive bulk fields are also introduced so that they couple to the SM fermions through the mass terms on the boundary. Integrating out the bulk fields generates SM fermion masses with exponentially small bulk mass dependences. The SM fermion masses except for the top quark are shown to be reproduced by mild tuning of the bulk masses. The one-loop Higgs potential is calculated and it is shown that electroweak symmetry breaking occurs by introducing additional bulk fields. The Higgs boson mass is also computed.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Quentin Bonnefoy ◽  
Peter Cox ◽  
Emilian Dudas ◽  
Tony Gherghetta ◽  
Minh D. Nguyen

Abstract We consider a 5D extension of the DFSZ axion model that addresses both the axion quality and fermion mass hierarchy problems, and predicts flavour-dependent, off-diagonal axion-fermion couplings. The axion is part of a 5D complex scalar field charged under a U(1)PQ symmetry that is spontaneously broken in the bulk, and is insensitive to explicit PQ breaking on the UV boundary. Bulk Standard Model fermions interact with two Higgs doublets that can be localized on the UV boundary or propagate in the bulk to explain the fermion masses and mixings. When the Higgs doublets are localized on the UV boundary, they induce flavour diagonal couplings between the fermions and the axion. However, when the Higgs doublets propagate in the bulk, the overlap of the axion and fermion profiles generates flavour off-diagonal couplings. The effective scale of these off-diagonal couplings in both the quark and lepton sectors can be as small as 1011 GeV, and therefore will be probed in future precision flavour experiments.


2021 ◽  
Vol 36 (27) ◽  
pp. 2150196
Author(s):  
Ying Zhang

To address fermion mass hierarchy and flavor mixings in the quark and lepton sectors, a minimal flavor structure without any redundant parameters beyond phenomenological observables is proposed via decomposition of the Standard Model Yukawa mass matrix into a bi-unitary form. After reviewing the roles and parameterization of the factorized matrix [Formula: see text] and [Formula: see text] in fermion masses and mixings, we generalize the mechanism to up- and down-type fermions to unify them into a universal quark/lepton Yukawa interaction. In the same way, a unified form of the description of the quark and lepton Yukawa interactions is also proposed, which shows a similar picture as the unification of gauge interactions.


1999 ◽  
Vol 14 (14) ◽  
pp. 2173-2203 ◽  
Author(s):  
HONG-MO CHAN ◽  
SHEUNG TSUN TSOU

Based on a non-Abelian generalization of electric–magnetic duality, the Dualized Standard Model (DSM) suggests a natural explanation for exactly three generations of fermions as the "dual colour" [Formula: see text] symmetry broken in a particular manner. The resulting scheme then offers on the one hand a fermion mass hierarchy and a perturbative method for calculating the mass and mixing parameters of the Standard Model fermions, and on the other hand testable predictions for new phenomena ranging from rare meson decays to ultra-high energy cosmic rays. Calculations to one-loop order gives, at the cost of adjusting only three real parameters, values for the following quantities all (except one) in very good agreement with experiment: the quark CKM matrix elements ‖Vrs‖, the lepton CKM matrix elements ‖Urs‖, and the second generation masses mc, ms, mμ. This means, in particular, that it gives near maximal mixing Uμ3 between νμ and ντ as observed by SuperKamiokande, Kamiokande and Soudan, while keeping small the corresponding quark angles Vcb, Vts. In addition, the scheme gives (i) rough order-of-magnitude estimates for the masses of the lowest generation, (ii) predictions for low energy FCNC effects such as KL→ eμ, and (iii) a possible explanation for the long-standing puzzle of air showers beyond the GZK cut-off. All these together, however, still represent but a portion of the possible physical consequences derivable from the DSM scheme, the majority of which are yet to be explored.


Author(s):  
Yoshiharu Kawamura

Abstract We propose a bottom-up approach in which a structure of high-energy physics is explored by accumulating existence proofs and/or no-go theorems in the standard model or its extension. As an illustration, we study fermion mass hierarchies based on an extension of the standard model with vector-like fermions. It is shown that the magnitude of elements of Yukawa coupling matrices can become $O(1)$ and a Yukawa coupling unification can be realized in a theory beyond the extended model, if vector-like fermions mix with three families. In this case, small Yukawa couplings in the standard model can be highly sensitive to a small variation of matrix elements, and it seems that the mass hierarchy occurs as a result of fine tuning.


Author(s):  
Maarten Boonekamp ◽  
Matthias Schott

With the huge success of quantum electrodynamics (QED) to describe electromagnetic interactions in nature, several attempts have been made to extend the concept of gauge theories to the other known fundamental interactions. It was realized in the late 1960s that electromagnetic and weak interactions can be described by a single unified gauge theory. In addition to the photon, the single mediator of the electromagnetic interaction, this theory predicted new, heavy particles responsible for the weak interaction, namely the W and the Z bosons. A scalar field, the Higgs field, was introduced to generate their mass. The discovery of the mediators of the weak interaction in 1983, at the European Center for Nuclear Research (CERN), marked a breakthrough in fundamental physics and opened the door to more precise tests of the Standard Model. Subsequent measurements of the weak boson properties allowed the mass of the top quark and of the Higgs Boson to be predicted before their discovery. Nowadays, these measurements are used to further probe the consistency of the Standard Model, and to place constrains on theories attempting to answer still open questions in physics, such as the presence of dark matter in the universe or unification of the electroweak and strong interactions with gravity.


2015 ◽  
Vol 30 (27) ◽  
pp. 1530022 ◽  
Author(s):  
H. Weigel ◽  
M. Quandt ◽  
N. Graham

In the standard model, stabilization of a classically unstable cosmic string may occur through the quantum fluctuations of a heavy fermion doublet. We review numerical results from a semiclassical expansion in a reduced version of the standard model. In this expansion, the leading quantum corrections emerge at one loop level for many internal degrees of freedom. The resulting vacuum polarization energy and the binding energies of occupied fermion energy levels are of the same order, and must therefore be treated on equal footing. Populating these bound states lowers the total energy compared to the same number of free fermions and assigns a charge to the string. Charged strings are already stabilized for a fermion mass only somewhat larger than the top quark mass. Though obtained in a reduced version, these results suggest that neither extraordinarily large fermion masses nor unrealistic couplings are required to bind a cosmic string in the standard model. Furthermore, we also review results for a quantum stabilization mechanism that prevents closed Nielsen–Olesen-type strings from collapsing.


2009 ◽  
Vol 24 (01) ◽  
pp. 101-112 ◽  
Author(s):  
JOSÉ BORDES ◽  
HONG-MO CHAN ◽  
TSOU SHEUNG TSUN

It is shown that when the mass matrix changes in orientation (i.e. rotates) in generation space for a changing energy scale, the masses of the lower generations are not given just by its eigenvalues. In particular, these masses need not be zero even when the eigenvalues are zero. In that case, the strong CP problem can be avoided by removing the unwanted θ term by a chiral transformation not in contradiction with the nonvanishing quark masses experimentally observed. Similarly, a rotating mass matrix may shed new light on the problem of chiral symmetry breaking. That the fermion mass matrix may so rotate with the scale has been suggested before as a possible explanation for up–down fermion mixing and fermion mass hierarchy, giving results in good agreement with experiment.


Sign in / Sign up

Export Citation Format

Share Document